Finding the inverse of a polynomial in a field

Click For Summary
To find the multiplicative inverse of the polynomial (3x^3 + 3x^2 + 2x - 1) in the field \mathbb{Q}[x]/J, where J is generated by x^2 + x + 3, the extended Euclidean algorithm is necessary. This algorithm helps determine the greatest common divisor (gcd) of the two polynomials, which will be a nonzero rational number since J is irreducible and monic. Once the gcd is identified, it can be expressed as a linear combination of the original polynomials. The resulting expression can then be manipulated to find the inverse within the factor ring. Following these steps will lead to the solution of the problem.
Adorno
Messages
29
Reaction score
0

Homework Statement


(A somewhat similar question to my last one). Let J be the ideal of the polynomial ring \mathbb{Q}[x] generated by x^2 + x + 3. Find the multiplicative inverse of (3x^3 + 3x^2 + 2x -1) + J in \mathbb{Q}[x]/J

Homework Equations


The Attempt at a Solution


I think I need to apply the extended Euclidean algorithm to 3x^3 + 3x^2 + 2x -1 and x^2 + x + 3 in order to find the greatest common divisor, but I am unsure of the details. Also, once I find the gcd, I don't know what I'm supposed to do with it.
 
Physics news on Phys.org
You are indeed correct that you must use the extended Euclidean algorithm with those two polynomials. If you are unfamiliar with the general (or extended) Euclidean algorithm, then I first recommend reviewing this subject. The algorithm is exactly the same for polynomials as it is for integers, so use the same strategy here and you should be good for that part.

Then of course, the question is, what to do once you have the gcd? Let's write F=3x^3+3x^2+2x-1 and J=x^2+x+3 for notational convenience. Since J is irreducible and monic, by definition of the gcd, gcd(F,J) must be either H or some nonzero rational number. As you might guess, it's a rational number (find it!). Say gcd(F,J)=q.

The extended Euclidean algorithm then yields an expression for q as a linear combination of F and J, that is, q=pF+gJ for some polynomials p and g. q is a nonzero rational, so
<br /> q q^{-1}=1=q^{-1}(pF+gJ).<br />
But then in the factor ring Q[x]/J, the additive unit is 0=0+J where (boldface) J is the ideal generated by the polynomial J. Work with the above expression, and I think you will have enough to answer the question :)
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 25 ·
Replies
25
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K