Artusartos
- 236
- 0
So if the parameter \theta is alpha...
L(\theta) = \frac{1}{\Gamma(\theta)\beta^{\theta}} x^{\theta-1} e^{-x/\beta}
Now I take the natural log of that...
ln(L(\theta)) = ln(\frac{1}{(1-\theta)!}) + ln(\frac{1}{\beta^{\theta}}) + ln(x^{\theta-1}) + ln(e^{-x/\beta})
Now I want to take the derivative of this...but I'm stuck because I don't know what the derivative of \frac{1}{(1-\theta)!} is...how can I find the derivative of a factorial?
L(\theta) = \frac{1}{\Gamma(\theta)\beta^{\theta}} x^{\theta-1} e^{-x/\beta}
Now I take the natural log of that...
ln(L(\theta)) = ln(\frac{1}{(1-\theta)!}) + ln(\frac{1}{\beta^{\theta}}) + ln(x^{\theta-1}) + ln(e^{-x/\beta})
Now I want to take the derivative of this...but I'm stuck because I don't know what the derivative of \frac{1}{(1-\theta)!} is...how can I find the derivative of a factorial?