Finding the power from the electric field amplitude

Click For Summary
SUMMARY

This discussion focuses on modeling electric field amplitudes in a ray-tracing algorithm using the Seidel and Rappaport model for electromagnetic waves. The user is attempting to compute the total electric field output by summing various components, specifically the reflection coefficients (fr, ft) and path loss (Li(d)). The user explores the application of the Friis Transmission Equation and questions the conversion of electric field components to power density, ultimately seeking clarity on whether to use the equation P=0.5*ε_oE^2 for power calculations.

PREREQUISITES
  • Understanding of electromagnetic wave propagation principles
  • Familiarity with the Friis Transmission Equation
  • Knowledge of Seidel and Rappaport's model for electric field amplitudes
  • Basic proficiency in ray-tracing algorithms
NEXT STEPS
  • Research the derivation and application of the Friis Transmission Equation in wireless communication
  • Learn about the significance of reflection coefficients in electromagnetic wave modeling
  • Study the relationship between electric field strength and power density in antenna theory
  • Explore advanced ray-tracing techniques for accurate electromagnetic field simulations
USEFUL FOR

Electrical engineers, wireless communication specialists, and researchers involved in electromagnetic wave modeling and antenna design will benefit from this discussion.

Frov_ken
Messages
5
Reaction score
0

Homework Statement


I am modelling a ray-tracing algorithm(image method), and I am in the part where I am getting the summation of all EM "rays" hitting the receiver. I come to a problem where I can't properly convert and unsure to do so.

Ideally, I should have a collection of Ei waves defined in Seidel and Rappaport's model(from below), since the summation of this would result to the total desired Electric field output. But I don't have the converted components working for E-field such as the fr , ft, and Li(d). Furthermore, I don't know if I could use S=E^2/Zo to get the power density to get the power received by the antenna. Would power densit(##W/m^2##)y for Friis also be the Power(W)?

In contrast, Friis Transmission Equation states the power received already by the antenna already from the equation (below). I do have the GT, GR, and R necessary for the equation, but the polarization and phase details I have yet to convert(from E-field factor) and include. This is where the extended version comes into guide me how I can try to add more variables in the Friis equation to account for these two.

I'm working at free space with certain wall permittivity.

Homework Equations


Here are some equations that serves as my basis.

  • From the paper "Site-Specific Propagation Prediction for Wireless In-Building Personal Communication System Design" Scott Y. Seidel and Theodore S. Rappaport, the model for the complex field amplitude of a wave path is as shown:
    E_i = E_o f_{ti} f_{ri} L_i(d)\prod_{j} Γ(θ_{ji}) e^{-j*2*pi*d/lambda}

    where fti and fri are the field amplitude radiation pattern of the transmitter and the receiver antenna respectively,
    Li(d) is the path loss dependence, with d being the distance.
    Γ is just the reflection coefficient.
    and the exponential tells the phase
    E_o is the reference field strength

    This will just be my guide. The reflected rays are the ones that I want, so the reflection coefficients would not need the (1 -)
  • transmission.bmp.png

    this is from http://www.antenna-theory.com/basics/transmission.bmp . This explains how the friis equation above is formulated. I will be using its tutorial onto how to do my own conversions for my need.

The Attempt at a Solution



First, I tried using the Friis Transmission Equation model and try to convert the components of the polarization and phase to power. I used the power density function(S = (reflection_coeff or Γ*E)^2/Zo) and tried to simulate reflection coefficients and found that Γ2 would be the power-equivalent factor, just like in the EXTENDED model above.

For the phase, I tried simulating a sum of two E-waves.
##\frac{(E_1*e^{(-j2*pi*d_1/lambda)} + E_2*e^{(-j2*pi*d_2/lambda)} )^2}{Zo}## and used ##P1 = \frac{E_1^2}{Zo}## and ##P2 = \frac{E_2^2}{Zo}##.
I got. ##P_1 e^{(-4j*pi*d_1/lambda)} + 2*P_1*P_2*Z_o* e^{(-2j*pi/lambda*(d_1+d_2))} + P_2 e^{(-4j*pi*d_2/lambda)}##.
I noticed that this is a bit too complex or inefficient for the code to run through. And I'm not sure it it's even right.

I decided that Seidel and Rappaport model's works better for the summation. So, I have to get the equivalent factor for fr, ft, and Li from the power gain I already have (it's in power notation, like in Friis equation)

To get this, I tried to relate the power density
tx-field-S.png
with the E shown in Seidel and Rappaport's model and Friis' equation. I get
fr to be ##\sqrt{G_T}##
and ft to be ##\sqrt{G_T}##
, and Li(d) to be ##\sqrt{\frac{1}{4*pi*d^2}}##.

Is this right? I think it isn't because I just related power density to power itself.
After this, I have to convert the consolidated E-wave summed output to power to display the power delay profile of the receiver. How is this "power" defined? would
tx-field-S.png
work or would ##P=0.5*ε_oE^2## work?

Any reference to my problem would really make me understand my situation here more.
 

Attachments

  • img1277.png
    img1277.png
    395 bytes · Views: 537
Last edited by a moderator:
Physics news on Phys.org
Frov_ken said:
tx-field-S.png
I think I'm overthinking in this problem. I just want to know if this equation is applicable or ##P=0.5*ε_oE^2## should be used here? So i could say that when I have the gain of an antenna
##Ga P = 0.5 *ε_o(E*f_a)^2##
##f_a = \sqrt{G_a}##

What about the path loss term Li?
##\frac{1}{4πR^2}P = 0.5 *ε_o(E*L_i)^2##
##L_i = \sqrt{\frac{1}{4πR^2}}##
will this be right?

and how can I get the ##E_o## of the Seidel- Rappaport model when I'm only given the Power transmitted to the antenna and it's Gain(dBi) pattern. Is it the relation between
tx-field-S-Pt.png
and
tx-field-S.png
?
 
Last edited:

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 23 ·
Replies
23
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K