Finding the power loss in a wire of varying cross-sectional area

  • Thread starter Thread starter Glenn G
  • Start date Start date
  • Tags Tags
    Area Length Wire
Click For Summary
The discussion focuses on calculating power loss in a wire with a varying cross-sectional area, where the user struggles to set up the necessary integral for resistance. The wire's area is described as varying linearly with length, leading to confusion about the relationship between area and radius. A detailed explanation is provided on how to express the resistance of a thin slice and integrate it over the entire wire to find total resistance. The conversation also touches on practical considerations, such as the impact of temperature on conductivity and the assumption that current flows uniformly through the wire. Overall, the thread emphasizes the mathematical approach needed to solve the problem effectively.
Glenn G
Messages
113
Reaction score
12
Thread moved from the technical forums to the schoolwork forums
TL;DR Summary: Finding the power loss in a wire of varying area - my problem is I don't know how to set up the integral

Hopefully you can see in the diagram below that the area of the wire varies linearly with length. I know the equations for resistance and power loss and I can express the resistance of a thin slice but need to integrate over the whole wire to get the full resistance - to find power then it is trivial. I've thought about this for a good while now but can't get it. Please help, this isn't homework (I'm very old and doing this for fun!)

1697391629568.png
 
Physics news on Phys.org
I have no answer for you but as an EE I have to comment --- that is one WEIRD "wire" :smile:

Just FYI, chicken scratching for problem posts is frowned on here. Best to type it in and Latex is encouraged.
 
Ok noted for future
 
Glenn G said:
TL;DR Summary: Finding the power loss in a wire of varying area - my problem is I don't know how to set up the integral

Hopefully you can see in the diagram below that the area of the wire varies linearly with length. I know the equations for resistance and power loss and I can express the resistance of a thin slice but need to integrate over the whole wire to get the full resistance - to find power then it is trivial. I've thought about this for a good while now but can't get it. Please help, this isn't homework (I'm very old and doing this for fun!)

View attachment 333623
##r## is a function of ##x##, not ##dx##.
 
Hi. Your description says 'the area of the wire varies linearly with length'. But the handwritten work says 'radius increases linearly with length'. The two statements are incompatible!

Also, 'length' is a constant for a given wire. I guess what you really mean is one of:
a) cross-sectional-area (CSA) varies linearly with distance along wire;
or
b) radius varies linearly with distance along wire.
 
For a conical wire:

the radius ##r_1 = \sqrt{\frac{A_1}{\pi}}## and ##r_2 = \sqrt{\frac{A_2}{\pi}}## so ##r(x) = r_1 + x \frac{r_2-r_1}{L}## where ##x \equiv 0## at ##r_1## and ##x \equiv L## at ##r_2##

The resistance of a thin disk at ##x## is ##R(x) = \frac{\rho}{\pi r(x)^2}dx##

Then the total resistance is ##R = \int_0^L R(x) = \frac{\rho}{\pi} \int_0^L \frac{1}{r(x)^2} \, dx = \frac{\rho}{\pi} \int_0^L \frac{1}{(r_1 + x \frac{r_2-r_1}{L})^2} \, dx = \frac{\rho L}{\pi (r_1-r_2)} \left. \frac{1}{(r_1 + x\frac{r_2-r_1}{L})} \right|_0^L##

## R = \frac{\rho L}{\pi (r_1-r_2)} (\frac{1}{(r_1 + L\frac{r_2-r_1}{L})} -\frac{1}{r_1}) = \frac{\rho L}{\pi (r_1-r_2)} (\frac{1}{r_2 } -\frac{1}{r_1}) = \frac{\rho L}{\pi (r_1-r_2)} (\frac{r_1-r_2}{r_1 r_2 } ) = \frac{\rho L}{\pi r_1 r_2 } ##

## R = \frac{\rho L}{\pi \sqrt{\frac{A_1}{\pi}} \sqrt{\frac{A_2}{\pi}} } = \frac{\rho L}{\sqrt{A_1 A_2} } ##
 
Last edited:
FWIW, in 'Real World', you would also have change of conductivity with position due temperature rise.
Think 'open', H-shaped fuses...
 
DaveE said:
For a conical wire:

the radius ##r_1 = \sqrt{\frac{A_1}{\pi}}## and ##r_2 = \sqrt{\frac{A_2}{\pi}}## so ##r(x) = r_1 + x \frac{r_2-r_1}{L}## where ##x \equiv 0## at ##r_1## and ##x \equiv L## at ##r_2##

The resistance of a thin disk at ##x## is ##R(x) = \frac{\rho}{\pi r(x)^2}dx##

Then the total resistance is ##R = \int_0^L R(x) = \frac{\rho}{\pi} \int_0^L \frac{1}{r(x)^2} \, dx = \frac{\rho}{\pi} \int_0^L \frac{1}{(r_1 + x \frac{r_2-r_1}{L})^2} \, dx = \frac{\rho L}{\pi (r_1-r_2)} \left. \frac{1}{(r_1 + x\frac{r_2-r_1}{L})} \right|_0^L##

## R = \frac{\rho L}{\pi (r_1-r_2)} (\frac{1}{(r_1 + L\frac{r_2-r_1}{L})} -\frac{1}{r_1}) = \frac{\rho L}{\pi (r_1-r_2)} (\frac{1}{r_2 } -\frac{1}{r_1}) = \frac{\rho L}{\pi (r_1-r_2)} (\frac{r_1-r_2}{r_1 r_2 } ) = \frac{\rho L}{\pi r_1 r_2 } ##

## R = \frac{\rho L}{\pi \sqrt{\frac{A_1}{\pi}} \sqrt{\frac{A_2}{\pi}} } = \frac{\rho L}{\sqrt{A_1 A_2} } ##
That's fine if ##L>>r_2-r_1##. Otherwise there is the complication that current near the surface of the wire has further to travel than that near the core.
 
haruspex said:
That's fine if ##L>>r_2-r_1##. Otherwise there is the complication that current near the surface of the wire has further to travel than that near the core.
Yes, there's a subtle assumption that the "disks" are truly just in series; i.e. radial current flow isn't significant.