I'm trying to find the coordinates where the determinant of the Kerr metric goes towards infinity. This should give the ring singularity of a Kerr (rotating) black hole. So, I'm starting out with the standard form Kerr metric in Boyer-Lindquist coordinates:(adsbygoogle = window.adsbygoogle || []).push({});

[tex]ds^2=\frac{\Delta}{\rho^2}(dt-a sin^2 \theta d\phi)^2-\frac{sin^2\theta}{\rho^2}((r^2+a^2)d\phi-a dt)^2-\frac{\rho^2}{\Delta}dr^2-\rho^2d\phi[/tex]

Then I break out the terms [tex]dt^2, dr^2, d\theta^2, d\phi^2[/tex] and [tex]dt d\phi[/tex], this gives the metric:

[tex]g_{ab} = \left(\begin{array}{cccc} \frac{\Delta-a^2 sin^2\theta}{\rho^2} & 0 & 0 & \frac{2a sin^2\theta (r^2+a^2-\Delta)}{\rho^2} \\ 0 & -\frac{\rho^2}{\Delta} & 0 & 0 \\ 0 & 0 & \rho^2 & 0 \\ \frac{2a sin^2\theta (r^2+a^2-\Delta)}{\rho^2} & 0 & 0 & \frac{sin^2 \theta (\Delta a^2 -(r^2 + a^2)^2)}{\rho^2} \end{array} \right)[/tex]

Calculating the determinant of this matrix in Maple gives the expression:

[tex]det(g_{ab})={\frac{1}{\delta}}\left(- \left( \sin \left( \theta \right) \left( \Delta\,{a}^{2}-{r

}^{4}-2\,{r}^{2}{a}^{2}-{a}^{4} \right) \right) ^{2}\Delta+ \left(

\sin \left( \theta \right) \left( \Delta\,{a}^{2}-{r}^{4}-2\,{r}^{2}{

a}^{2}-{a}^{4} \right) \right) ^{2}{a}^{2} \left( \sin \left( \theta

\right) \right) ^{2}+4\,{a}^{2} \left( \sin \left( \theta \right)

\right) ^{4}{r}^{4}+8\,{a}^{4} \left( \sin \left( \theta \right)

\right) ^{4}{r}^{2}[/tex]

[tex]-8\,{a}^{2} \left( \sin \left( \theta \right)

\right) ^{4}{r}^{2}\Delta+4\,{a}^{6} \left( \sin \left( \theta

\right) \right) ^{4}-8\,{a}^{4} \left( \sin \left( \theta \right)

\right) ^{4}\Delta+4\,{a}^{2} \left( \sin \left( \theta \right)

\right) ^{4}{\Delta}^{2}[/tex][tex])[/tex]

Are my calculations correct? And how can I find the coordinates where it goes towards infinity in an analytical way? I'm not even sure how to plot the determinant on a computer given I'm not entirely used to Boyer-Lindquist coordinates.

Edit: Pardon the "bad" thread title, I pushed the submit button rather prematurely.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Finding the ring-singularity of a rotating black hole

**Physics Forums | Science Articles, Homework Help, Discussion**