Finding theoretical impedance of acoustic transducer

AI Thread Summary
Calculating the impedance of an acoustic transducer is possible if its conductance and capacitance values are known, but the configuration of these parameters (series or parallel) is crucial. Additional factors, such as inductance and the frequency range of operation, can significantly influence the actual impedance. The assumptions made by the data providers regarding resonance may also affect the analysis. A deeper understanding of the transducer's equivalent network is necessary for accurate calculations. Electromechanical acoustic circuit analysis is recommended for further exploration of these concepts.
nauman
Messages
95
Reaction score
4
Hi all

If we have an acoustic transducer and values of its two parameters are known, i.e conductance and capacitance, is it possible to calculate impedance using these two parameters?

Thanks
 
Engineering news on Phys.org
Yes.
Are those parameters in series or in parallel ?
What is the transducer equivalent network ?
 
nauman said:
Hi all

If we have an acoustic transducer and values of its two parameters are known, i.e conductance and capacitance, is it possible to calculate impedance using these two parameters?

Thanks
It's hard to say without knowing more about your transducer. Of course we can calculate the impedance from your two parameters (after you answer @Baluncore's question), but is that the actual impedance of the transducer? I suspect that inductance matters too, it usually does. Over what frequency range? Often, if you are working away from resonance, you can ignore some parameters. The people that gave you that data may have made some assumptions about what is important. They may also have designed it to be used at resonance, in which case the resonant frequency and the capacitance will determine the dominant inductance.

So, basically, we need to know more to answer your real question.
 
Last edited:
Thread 'Weird near-field phenomenon I get in my EM simulation'
I recently made a basic simulation of wire antennas and I am not sure if the near field in my simulation is modeled correctly. One of the things that worry me is the fact that sometimes I see in my simulation "movements" in the near field that seems to be faster than the speed of wave propagation I defined (the speed of light in the simulation). Specifically I see "nodes" of low amplitude in the E field that are quickly "emitted" from the antenna and then slow down as they approach the far...
Hello dear reader, a brief introduction: Some 4 years ago someone started developing health related issues, apparently due to exposure to RF & ELF related frequencies and/or fields (Magnetic). This is currently becoming known as EHS. (Electromagnetic hypersensitivity is a claimed sensitivity to electromagnetic fields, to which adverse symptoms are attributed.) She experiences a deep burning sensation throughout her entire body, leaving her in pain and exhausted after a pulse has occurred...
Back
Top