yungman
- 5,741
- 294
I want to find the unit vector of ## \vec E= \hat x A\;+\;\hat y Be^{j\phi}##
##\hat E=\frac {\vec E}{|\vec E|}##
From my work: ##|\vec E|=\sqrt{A^2+(Be^{j\phi})^2}##
My question is what is ##(Be^{j\phi})^2##?
Do I substitude ##e^{j\phi}=\cos \phi +j\sin \phi##? So ##(Be^{j\phi})^2=B^2[(\cos\phi+j\sin\phi)(\cos\phi-j\sin\phi)]\;=\;B^2(\cos^2\phi+\sin^2\phi)\;=\;B^2##
##\Rightarrow\;|\vec E|=\sqrt{A^2+(Be^{j\phi})^2}\;=\;\sqrt{A^2+B^2}## and
\hat E\;=\;\frac{\hat x A\;+\;\hat y Be^{j\phi}}{\sqrt{A^2+B^2}}
Thanks
##\hat E=\frac {\vec E}{|\vec E|}##
From my work: ##|\vec E|=\sqrt{A^2+(Be^{j\phi})^2}##
My question is what is ##(Be^{j\phi})^2##?
Do I substitude ##e^{j\phi}=\cos \phi +j\sin \phi##? So ##(Be^{j\phi})^2=B^2[(\cos\phi+j\sin\phi)(\cos\phi-j\sin\phi)]\;=\;B^2(\cos^2\phi+\sin^2\phi)\;=\;B^2##
##\Rightarrow\;|\vec E|=\sqrt{A^2+(Be^{j\phi})^2}\;=\;\sqrt{A^2+B^2}## and
\hat E\;=\;\frac{\hat x A\;+\;\hat y Be^{j\phi}}{\sqrt{A^2+B^2}}
Thanks