MHB Finite Fields and Splitting Fields

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Beachy and Blair's book: Abstract Algebra (3rd Edition) and am currently studying Theorem 6.5.2.

I need help with the proof of the Theorem.

Theorem 6.5.2 and its proof read as follows:View attachment 2842In the conclusion of the proof, Beachy and Blair write the following:

" ... ... Hence, since F is generated by these roots, it is a splitting field of f(x) over its prime subfield."

I am concerned about how exactly Beachy and Blair reach their conclusion that F is a splitting field for f(x) ... ...

Now Beachy and Blair define a splitting field as follows:View attachment 2843Now the first condition in the definition is achieved in the proof of the Theorem ... but how/why do we have the second condition for a splitting filed hold ... the implication of Beachy and Blair is that F being generated by the $$p^n$$ roots is the same as adjoining these roots to K, where K is the prime subfield of F ... but how/why does this follow?

Further, is it always the case that F being generated by n roots is the same as adjoining these roots to the subfield in question - or is Beachy and Blair's conclusion true because K is the prime subfield?

I would appreciate some help in clarifying the above point.

Peter
 
Physics news on Phys.org
Well, you could look at it this way:

Suppose $E$ is an extension of $\Bbb Z_p$, but a subfield of $F$.

Then $E$ cannot contain ALL of the roots of $f(x) = x^{p^n} - x$, because it doesn't have enough elements. So $f$ cannot split in any subfield of $F$ and it DOES split in $F$.

Now for any subset $S \subseteq F$, we certainly have $\Bbb Z_p(S) \subseteq F$ (they might be equal, they might not, it depends on $S$).

In particular, $\Bbb Z_p(\alpha_1,\alpha_2,\dots,\alpha_{p^n-1}) \subseteq F$, where $\alpha_j$ is any non-zero element of $F$.

Just as clearly: $F^{\ast} = \{\alpha_1,\alpha_2,\dots,\alpha_{p^n-1}\} \subseteq \Bbb Z_p(\alpha_1,\alpha_2,\dots,\alpha_{p^n-1})$

This means:

$F^{\ast} \subseteq \Bbb Z_p(\alpha_1,\alpha_2,\dots,\alpha_{p^n-1}) \subseteq F$.

Now $F$ and $F^{\ast}$ differ by one element, $0$. Since $0 \in \Bbb Z_p$, we have:

$\Bbb Z_p(\alpha_1,\alpha_2,\dots,\alpha_{p^n-1}) = F$

which is condition 2.

Note that the list of roots is somewhat redundant, because $p - 1$ of them are already in $\Bbb Z_p$.
 
Deveno said:
Well, you could look at it this way:

Suppose $E$ is an extension of $\Bbb Z_p$, but a subfield of $F$.

Then $E$ cannot contain ALL of the roots of $f(x) = x^{p^n} - x$, because it doesn't have enough elements. So $f$ cannot split in any subfield of $F$ and it DOES split in $F$.

Now for any subset $S \subseteq F$, we certainly have $\Bbb Z_p(S) \subseteq F$ (they might be equal, they might not, it depends on $S$).

In particular, $\Bbb Z_p(\alpha_1,\alpha_2,\dots,\alpha_{p^n-1}) \subseteq F$, where $\alpha_j$ is any non-zero element of $F$.

Just as clearly: $F^{\ast} = \{\alpha_1,\alpha_2,\dots,\alpha_{p^n-1}\} \subseteq \Bbb Z_p(\alpha_1,\alpha_2,\dots,\alpha_{p^n-1})$

This means:

$F^{\ast} \subseteq \Bbb Z_p(\alpha_1,\alpha_2,\dots,\alpha_{p^n-1}) \subseteq F$.

Now $F$ and $F^{\ast}$ differ by one element, $0$. Since $0 \in \Bbb Z_p$, we have:

$\Bbb Z_p(\alpha_1,\alpha_2,\dots,\alpha_{p^n-1}) = F$

which is condition 2.

Note that the list of roots is somewhat redundant, because $p - 1$ of them are already in $\Bbb Z_p$.

Thanks Deveno ... Just working through your post carefully now ...

Peter
 
Deveno said:
Well, you could look at it this way:

Suppose $E$ is an extension of $\Bbb Z_p$, but a subfield of $F$.

Then $E$ cannot contain ALL of the roots of $f(x) = x^{p^n} - x$, because it doesn't have enough elements. So $f$ cannot split in any subfield of $F$ and it DOES split in $F$.

Now for any subset $S \subseteq F$, we certainly have $\Bbb Z_p(S) \subseteq F$ (they might be equal, they might not, it depends on $S$).

In particular, $\Bbb Z_p(\alpha_1,\alpha_2,\dots,\alpha_{p^n-1}) \subseteq F$, where $\alpha_j$ is any non-zero element of $F$.

Just as clearly: $F^{\ast} = \{\alpha_1,\alpha_2,\dots,\alpha_{p^n-1}\} \subseteq \Bbb Z_p(\alpha_1,\alpha_2,\dots,\alpha_{p^n-1})$

This means:

$F^{\ast} \subseteq \Bbb Z_p(\alpha_1,\alpha_2,\dots,\alpha_{p^n-1}) \subseteq F$.

Now $F$ and $F^{\ast}$ differ by one element, $0$. Since $0 \in \Bbb Z_p$, we have:

$\Bbb Z_p(\alpha_1,\alpha_2,\dots,\alpha_{p^n-1}) = F$

which is condition 2.

Note that the list of roots is somewhat redundant, because $p - 1$ of them are already in $\Bbb Z_p$.

Thanks Deveno ... BUT ... I am slightly uneasy that I am fully understanding your analysis ... so forgive me if I check a couple of points with you to see if I understand fully what is going on ... ...

We have $$ \mathbb{Z}_p = \{ 0, 1, 2, 3 ... ... p-2, p-1 \} $$

Then we add elements $$ \alpha_j $$ to create the field $$ \mathbb{Z}_p ( \alpha_1, \alpha_2, \ ... \ ... \ \alpha_{{p^n} - 1} )$$.

So $$ \mathbb{Z}_p ( \alpha_1, \alpha_2, \ ... \ ... \ \alpha_{{p^n} - 1}$$ is the minimal field containing the elements of $$ \mathbb{Z}_p = \{ 0, 1, 2, 3 ... ... p-2, p-1 \} $$ and the elements $$ \alpha_1, \alpha_2, \ ... \ ... \ , \alpha_{{p^n} - 1} $$

Is that correct?

If so, then some of the elements $$ \alpha_j $$ are equal to the elements of $$ \mathbb{Z}_p $$.

If the above is correct, then, further, of course, the elements of F* also contain the elements $$ \mathbb{Z}_p $$.

Is my analysis of the situation correct?

Would appreciate some clarification and help.

Peter
***EDIT*** I just noticed that you write:

" ... ... Note that the list of roots is somewhat redundant, because $p - 1$ of them are already in $\Bbb Z_p$"

I suspect that this answers my question ... ...
 
Last edited:
Peter said:
Thanks Deveno ... BUT ... I am slightly uneasy that I am fully understanding your analysis ... so forgive me if I check a couple of points with you to see if I understand fully what is going on ... ...

We have $$ \mathbb{Z}_p = \{ 0, 1, 2, 3 ... ... p-2, p-1 \} $$

Then we add elements $$ \alpha_j $$ to create the field $$ \mathbb{Z}_p ( \alpha_1, \alpha_2, \ ... \ ... \ \alpha_{{p^n} - 1} )$$.

So $$ \mathbb{Z}_p ( \alpha_1, \alpha_2, \ ... \ ... \ \alpha_{{p^n} - 1}$$ is the minimal field containing the elements of $$ \mathbb{Z}_p = \{ 0, 1, 2, 3 ... ... p-2, p-1 \} $$ and the elements $$ \alpha_1, \alpha_2, \ ... \ ... \ , \alpha_{{p^n} - 1} $$

Is that correct?

If so, then some of the elements $$ \alpha_j $$ are equal to the elements of $$ \mathbb{Z}_p $$.

If the above is correct, then, further, of course, the elements of F* also contain the elements $$ \mathbb{Z}_p $$.

Is my analysis of the situation correct?

Would appreciate some clarification and help.

Peter
***EDIT*** I just noticed that you write:

" ... ... Note that the list of roots is somewhat redundant, because $p - 1$ of them are already in $\Bbb Z_p$"

I suspect that this answers my question ... ...

Yep.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top