First order homogenous DE with variable coefficient

MrGandalf
Messages
30
Reaction score
0
I was stumped by this differential equation. The function x = x(t).

x^{\tiny\prime\prime} + \frac{1}{t}x^{\tiny\prime} = 0.

You have the initial values x(a) = 0 and x(1) = 1.

What I did was to introduce a new function u = x', so I ended up with the first order homogenous DE:
u^{\tiny\prime} + \frac{1}{t}u = 0.

This can't be that difficult, but the book which I am using does not give any details how to solve this particular problem. I only know how to solve it if I have a constant, or a function of t, on the right side.

The solution to the problem is:
x(t) = 1 - \frac{\log t}{\log a}.

Hope someone can shed some light on this. Thank ye, ye scurvy landlubber! Yarrr!
 
Last edited:
Physics news on Phys.org
When you did a reduction of order, you arrived to a separable equation that isn't difficult to solve at all. There is no need to reduce order since the original equation can be rewritten in a simpler form. What happens if you multiply the second order ode by t?. Can you simplify it (i.e. the derivative of something)?
 
Yes! Of course! How could I miss that? :)

Thank you for helping me!
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top