Does the small size of a hole affect fluid flow rate?

Click For Summary
The discussion focuses on calculating the fluid flow rate of oil through very small orifices, ranging from 0.0030 to 0.0760 inches. Special considerations are needed due to the small size, particularly regarding the Reynolds number, which determines if the flow is laminar or turbulent. The ASME MFC-14 standard is mentioned, although the orifice size may be too small for its equations. Finding the discharge coefficient (Cd) for such small orifices is highlighted as a challenge, and practical experiments are suggested to measure flow rates. The setup involves two chambers filled with oil, emphasizing that air is not a factor in this fluid flow scenario.
pbiebach
Messages
5
Reaction score
0
I would like to calculate the rate at which fluid(oil) is transferred from one chamber to the other.
Note the orifices is in the range of 0.0030 to 0.0760 in I'm wondering if the very small size of this hole requires any special consideration.

http://myimgs.net/images/oyfi.jpg

I realize more info such as oil density and dimensions are required for a exact solution, however I would like to determine a general solution into which I can substitute these values.
Any hints to get me on the correct path or even better a sample calculation would appreciated.

Note this is not a homework question.
 
Last edited by a moderator:
Engineering news on Phys.org
You might consider the type of flow to be expected for oil flowing through the small diameter hole using the definition of Reynolds number and the physical properties of the type of oil considered. If Re < 2300 flow is laminar, above it is expected to be turbulent.
Go on from this point.
 
ASME MFC-14 handles flow through small orifi but I am thinking that this is even too small for that. I have a copy at my desk which I don't have access to right now. That being said, the flow will still follow orifice equations. The tough part is to find out what the Cd of the small orifice is, especially with what will be pretty small Re.
 
I suppose a real experiment would not be difficult to set up: pressurized reservoir, small orifice and weighing scale (to measure output flow) On the other hand, there must have been done extensive research on flow of viscous substances through small holes if one considers automated dispensers for glues, hot melts etc
 
I'm confused about the setup. Is chamber #2 initially full of air? I would expect air bubbles to form at the orifice and rise to the top of chamber #1. Not a simple problem at all.
 
Both chambers are full of oil, single fluid problem, no air involved. also the spring is weak so we will assume the flow to be very slow.

happy new years everyone
 
Had my central air system checked when it sortta wasn't working. I guess I hadn't replaced the filter. Guy suggested I might want to get a UV filter accessory. He said it would "kill bugs and particulates". I know UV can kill the former, not sure how he thinks it's gonna murder the latter. Now I'm finding out there's more than one type of UV filter: one for the air flow and one for the coil. He was suggesting we might get one for the air flow, but now we'll have to change the bulb...

Similar threads

Replies
0
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 45 ·
2
Replies
45
Views
6K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
9
Views
4K
  • · Replies 31 ·
2
Replies
31
Views
4K