moenste said:
I don't see what's wrong with the series one.
I did a graph in my notebook and since we have two identical resistors then their voltage and resistance is identical or half the given one (E / 2 and R / 2).
The problem statement says that each winding has resistance R, not that the total resistance is R.
moenste said:
And in parallel: B = 2 * μ0 * N * (4E / R). The voltage is the same but the current is half of it and as well as resistance. So we have I / 2 = E / (R / 2) which gives us I = 4E / R.
You still have two factor-of-two mistakes in the parallel case. I don't fully understand what you're trying to do, but you seem to be assuming all of the current will flow through both windings, but as the windings are parallel, some of the current flows through each, and as I already mentioned it is easiest to calculate the current for each one separately then add up the flux for the two windings afterwards.
In general, you also need to write out the working in smaller steps, so that each step is clear without having to guess intermediate steps, and so that if you make a mistake it will be easy to spot it. You also need to be careful to make sure your assumptions are the same as those in the original problem statement. I think you should at least state the current in each winding as an intermediate step.
I've always found it useful for simple questions involving voltage, current, resistance and so on to use a mental model based on water flow. Voltage (potential) is equivalent to pressure, which can be represented by the relative height within a water system operated by gravity, or by a pump with a particular pressure for a battery. Current is the amount of water flowing. Resistance is like constrictions in pipes, so parallel constricted pipes have less resistance.
(For dynamic circuits, a capacitor is like a rubber membrane across a pipe, allowing alternating flow but resisting direct flow, and an inductor is like a heavy paddle-wheel or turbine in the flow, which tends to resist changes in current. However, those are only loose analogies and it's probably better to try to get used to the mathematics for describing the electronic properties of the relevant components).