1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Force due to gravity inside planet

  1. Nov 27, 2012 #1
    Here is a simple problem in classical gravitation.

    Consider a spherical planet of radius R, and let the radial coordinate r originate from the plant's center. If the density of the planet is ρ from 0 ≤ r < R/2 and ρ/3 from R/2 < r < R, then my work tells me that the maximum force due to gravity inside the planet is at r = R/2, not at r = R as one might expect.

    [tex]0\leq r\leq R/2,\qquad F_G = \frac{Gm\left(\rho \frac{4}{3}\pi r^3\right)}{r^2} = \frac{4\pi}{3}Gm\rho r \\
    R/2 \leq r \leq R,\qquad F_G = \frac{Gm\left[ \rho\frac{4\pi}{3}\left(\frac{R}{2} \right)^3 + \frac{\rho}{3}\frac{4\pi}{3} \left( r^3 - \left(\frac{R}{2} \right)^3 \right) \right]}{r^2} = \frac{4\pi}{3}\frac{Gm\rho}{r^2}\left[ \left(\frac{R}{2} \right)^3 + \frac{1}{3}r^3 - \frac{1}{3}\left(\frac{R}{2} \right)^3 \right][/tex]

    My work is above. Is this be correct, that the maximum force due to gravity would be at r = R/2? Thanks for your time!
  2. jcsd
  3. Nov 27, 2012 #2


    User Avatar
    2017 Award

    Staff: Mentor

    Neglecting 4pi/3 Gmρ as prefactor:

    In the inner part: ##F \propto r##
    In the outer part: ##F \propto (\frac{R}{2})^3/r^2 + 1/3 (r-\frac{R}{2}) = \frac{1}{r^2} ((\frac{R}{2})^3+\frac{1}{3}r^3-\frac{1}{3}(\frac{R}{2})r^2)##

    I get a different third term for the force.

    ##\frac{dF}{dr}=-\frac{R^3}{4r^3} + \frac{1}{3}## which is 0 at ##4r^3=3R^3##, it has a minimum in the less dense region.

    F(R/2) > F(R), so I can confirm your result.
  4. Nov 27, 2012 #3
    Thanks mfb. Regarding our difference, I think your third term might be mistaken. If we hollow out the planet from 0 ≤ r < R/2, then the force due to gravity in the domain R/2 ≤ r ≤ R is

    [tex] F_G = \frac{Gm\frac{\rho}{3}}{r^2}\left[ \frac{4\pi}{3}r^3 - \frac{4\pi}{3}\left(\frac{R}{2}\right)^3\right] [/tex]

    By the shell theorem, it as if all the volume enclosed is contained in a point at the center. Do you agree?
  5. Nov 27, 2012 #4


    User Avatar
    2017 Award

    Staff: Mentor

    Oh, you are right.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook