Force-free, axisymmetric magnetic field in MHD

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Homework Statement
Show that a force-free, axisymmetric field has ##B_{\phi} = f(\psi)/R## in cylindrical polars, where ##f## is an arbitrary function and ##\psi(R,z) = rA_{\phi}(R,z)## is the poloidal flux function, and find the equation satisfied by ##\psi##.
Relevant Equations
##-\nabla^2 \mathbf{B} = \lambda^2 \mathbf{B}##
Force free: ##\mathbf{J} \times \mathbf{B} \sim (\nabla \times \mathbf{B}) \times \mathbf{B} = 0##
(N.B. MHD applies so ##\epsilon_0|\partial \mathbf{E}/\partial t|/|\mathbf{J}| \ll 1##).

Axisymmetric: can write ##\mathbf{B} = \nabla \psi \times \nabla \phi + B_{\phi} \mathbf{e}_{\phi}##
(##\phi## is the azimuthal coordinate i.e. ##\nabla \phi = \mathbf{e}_{\phi}/r##)

Inserting into ##(\nabla \times \mathbf{B}) \times \mathbf{B} = 0## gives a bit of a mess. Is there an easier route?
 
Physics news on Phys.org
If the cross-product of two vectors is zero, then those vectors are scalar multiples of each other. Hence a force-free field satisfies \nabla \times \mathbf{B} = \alpha\mathbf{B} for some scalar field \alpha, which (taking the divergence of the above with \nabla \cdot \mathbf{B} = 0) must satisfy <br /> \mathbf{B} \cdot \nabla \alpha = 0. Mestel, Stellar Magnetism (2nd ed) at 58ff gives the equations satisfied by the poloidal and toroidal components of \mathbf{B} in the axisymmetric case.
 
Last edited:
  • Like
Likes vanhees71 and ergospherical
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top