Force to apply to a loop moving away from a current-carrying wire

AI Thread Summary
The discussion revolves around calculating the force required to move a loop away from a current-carrying wire while maintaining a constant speed. The initial analysis indicates that the force applied should decrease as the loop moves further from the wire due to the weakening magnetic field. However, the reference book states that the force remains constant, leading to confusion about the conditions under which this force is determined. Clarification is provided that the variable distance to the wire, denoted as h, should not be treated as constant when calculating the force. Ultimately, the correct formulation for the force involves treating the distance as a variable and adjusting the expression accordingly.
lorenz0
Messages
151
Reaction score
28
Homework Statement
A square loop of wire with ##N## turns, side of length ##l## and resistance ##R## is initially at distance ##h## to the right of an infinitely long wire carrying a steady current ##i##.
(1) Find the induced current if the loop starts moving away from the wire at constant speed ##v##.
(2) Find the force you would have to apply to the loop so that it continues moving at this constant speed ##v##.
Relevant Equations
##\mathcal{E}=-\frac{d\Phi(\vec{B})}{dt},\ \vec{F}=i\vec{l}\times\vec{B}##
What I have done:

(1) ##\Phi(\vec{B})=\int_{S}\vec{B}\cdot d\vec{S}=-\frac{N\mu_0 il}{2\pi}\int_{s=h}^{s=h+l}\frac{ds}{s}=-\frac{\mu_0iNl}{2\pi}\ln(\frac{h+l}{h})##
so ##\mathcal{E}=-\frac{d\phi(\vec{B})}{dt}=-\frac{\mu_0iNl^2v}{2\pi h(h+l)}## so ##i_{ind}=\frac{\mathcal{E}}{R}=-\frac{\mu_0il^2Nv}{2\pi Rh(h+l)}.##

(2) The force one the left side of the square has greater magnitude than that on the right side (since ##i## and ##l## are the same for both sides but ##B_{left}=\frac{\mu_0 i}{2\pi s}>B_{right}=\frac{\mu_0 i}{2\pi (s+l)}##) so the net force on the loop is to the left, hence, to make the loop move away at constant speed ##v## I should apply a force to the right which is equal in magnitude to the net force on the loop due to the magnetic field: ##F_{applied}=F_{right}-F_{left}=i_{ind}l(B_{right}-B_{left})=-\frac{\mu_0il^2Nv}{2\pi Rh(h+l)}l\frac{\mu_0i}{2\pi}(\frac{1}{h+l+vt}-\frac{1}{h+vt})=\frac{\mu_0^2 i^2l^4Nv}{(2\pi)^2 Rh(h+l)(h+l+vt)(h+vt)}##, where the last two equalities follow from the fact that, if the loop starts moving to the right at constant speed ##v## at time ##t=0##, at time ##t## the left side is at distance ##h+vt## from the wire and the right side at distance ##h+vt+l##.

Now, my analysis does make sense to me since, intuitively, as the loop is moving away from the wire the magnetic field gets increasingly weaker so the force to be applied to make it move at constant speed ##v## should get weaker too, but the book I got this problem from says that the force applied should be ##F=\frac{\mu_0^2i^2l^4Nv}{(2\pi)^2Rh^2(h+l)^2}##.
Why is the force constant? This result agrees with mine at ##t=0## so is it possible that maybe the text is asking for the force to be applied just as the loop starts moving to the right? Thanks
 
Physics news on Phys.org
lorenz0 said:
so ##\mathcal{E}=-\frac{d\phi(\vec{B})}{dt}=-\frac{\mu_0iNl^2v}{2\pi h(h+l)}##
After you take the derivative, ##h## is a variable that denotes the instantaneous distance to the wire and ##v## is its (constant) rate of change, ##v=\frac{dh}{dt}##. So when you write ##F=\frac{\mu_0^2i^2l^4Nv}{(2\pi)^2Rh^2(h+l)^2}##, you cannot treat ##h## as a constant. It would have been clearer to use another variable ##y## as the distance to the wire and write the force as
##F=\frac{\mu_0^2i^2l^4Nv}{(2\pi)^2Ry^2(y+l)^2}## then replace ##y=h+vt## in the expression.

By the way, I did not check your force expression for correctness.
 
kuruman said:
After you take the derivative, ##h## is a variable that denotes the instantaneous distance to the wire and ##v## is its (constant) rate of change, ##v=\frac{dh}{dt}##. So when you write ##F=\frac{\mu_0^2i^2l^4Nv}{(2\pi)^2Rh^2(h+l)^2}##, you cannot treat ##h## as a constant. It would have been clearer to use another variable ##y## as the distance to the wire and write the force as
##F=\frac{\mu_0^2i^2l^4Nv}{(2\pi)^2Ry^2(y+l)^2}## then replace ##y=h+vt## in the expression.

By the way, I did not check your force expression for correctness.
I see, thanks. So, if I understand correctly, if I treated ##h## as a constant (representing the initial loop-wire distance at ##t=0##), ##F=\frac{\mu_0^2i^2l^4Nv}{(2\pi)^2Rh(h+l)(h+vt)(h+l+vt)}## would be a correct formulation for the force to be applied at time ##t##, right?
 
I check your old expression and it is correct. Your new expression looks incorrect. If you had followed my suggestion
kuruman said:
Write the force as
##F=\frac{\mu_0^2i^2l^4Nv}{(2\pi)^2Ry^2(y+l)^2}## then replace ##y=h+vt## in the expression.
you would have gotten the correct expression.
 
kuruman said:
I check your old expression and it is correct. Your new expression looks incorrect. If you had followed my suggestion

you would have gotten the correct expression.
I see, thank you very much.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top