Forces involved in principle of virtual work

AI Thread Summary
The principle of virtual work indicates that a system can remain in equilibrium if the total virtual work done by weights is zero, allowing for deformation into a parallelogram. However, this assumes that reaction forces at the joints do not contribute to the work done, raising questions about the validity of this assumption. The discussion emphasizes that forces at the joints are internal and consist of action-reaction pairs between bars. Acknowledging these internal forces is crucial for a complete understanding of the system's dynamics. Overall, the equilibrium condition relies heavily on the treatment of internal forces within the system.
phantomvommand
Messages
287
Reaction score
39
Homework Statement
See picture below
Relevant Equations
Work done = Fd
Screenshot 2024-05-28 at 12.46.18 AM.png

The answer is as such: There’s only one way for the system to move: the rectangle can deform into a parallelogramso that the left horizontal arm moves up, and the right horizontal arm moves down by thesame amount. Then the total virtual work done on the scale by the weights is zero, so thesystem can be in equilibrium no matter where on the arms the weights are placed.

While I can understand this, this assumes that there is 0 work done by reaction forces at the joints, so the net work done on the system is entirely due to gravity. How fair is this assumption?
 
Physics news on Phys.org
The forces in the joints are internal forces of the system. At a joint where two bars meet, the forces that the two bars exert on each other are action-reaction forces.
 
  • Like
Likes phantomvommand
TSny said:
The forces in the joints are internal forces of the system. At a joint where two bars meet, the forces that the two bars exert on each other are action-reaction forces.
Oh right, forgot about that! Thanks!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top