MHB Formula for changing a plane intersection angle

Click For Summary
SUMMARY

The discussion focuses on calculating and altering the intersection angles between planes formed by four vectors in three-dimensional space, specifically vectors vBA, vBD, vBE, and vBC. The angles of intersection are computed using vector rejection techniques, resulting in intersection angles of ∠ ABC ∩ DBC = 2.484, ∠ ABC ∩ EBC = 0.674, and ∠ DBC ∩ EBC = 3.125. The user seeks a method to change the angle ∠ ABC ∩ DBC without altering the angles between the vectors, proposing a rotation around the axis defined by vBC. The conversation also touches on the use of the cross product to determine distances in vector geometry.

PREREQUISITES
  • Understanding of vector mathematics in three-dimensional space
  • Familiarity with vector rejection and cross product operations
  • Knowledge of Euclidean geometry and plane intersections
  • Proficiency in using mathematical notation and LaTeX for vector equations
NEXT STEPS
  • Research methods for rotating vectors in 3D space using rotation matrices
  • Explore the concept of vector rejection and its applications in geometry
  • Study the implications of the cross product in determining distances between points and lines
  • Investigate the geometric interpretation of angles between planes and their intersections
USEFUL FOR

Mathematicians, physicists, and engineers working with vector geometry, particularly those involved in 3D modeling, computer graphics, and spatial analysis.

LMHmedchem
Messages
20
Reaction score
0
Hello,

This is a bit more complex than my previous post, but I don't think it qualifies for university level difficulty. Please move this to the appropriate forum if my assessment is not correct.

I have 4 vectors in three space where each vector has its tail at the same point (point B).
Code:
id    x        y        z
B     0.000    0.000    0.000
vBA   0.183   -0.479    0.358
vBD   1.970    2.395   -0.524
vBE  -3.798   -1.214    0.168
vBC  -5.847    4.571   -1.137

I have the angle between each vector and vBC (in radians).
Code:
∠ ABC = 2.466
∠ DBC = 1.570
∠ EBC = 0.989

Each vector pair forming one of the angles above lies on a Euclidean plane. These planes intersect along vBC. I can calculate the plane intersection angles as follows.

For the intersection angle ∠ ABC ∩ DBC (angle of intersection between planes ABC and DBC, sorry I don't know the proper symbolic nomenclature for plane intersection angles).

1. take the vector rejection of vBA against vBC
2. take the vector rejection of vBD against vBC
3. calculate the angle between the two rejection vectors
Code:
∠ ABC ∩ DBC = 2.484
∠ ABC ∩ EBC = 0.674
∠ DBC ∩ EBC = 3.125

I need to change the angle of intersection between two planes without changing any of the angles between vectors ∠ABC, ∠DBC, or ∠EBC. Changing ∠ ABC ∩ DBC would involve essentially rotating the tip of vBA in a circle around the axis of vBC while the tail of vBA stays at point B, but I don't know how to do that.

The methods I have seem for rotating a vector in 3D involve rotating the vector about one axis.

From stackexchange, a 3D rotation around the Z-axis would be,
Code:
|cos θ   −sin θ   0| |x|   |x cos θ − y sin θ|   |x'|
|sin θ    cos θ   0| |y| = |x sin θ + y cos θ| = |y'|
|  0       0      1| |z|   |        z        |   |z'|

To use such a method, I would have to translate my current coordinates so that vBC is aligned with one axis, make the 3D vector rotation, and then translate back. That seems overly involved. It seems as if I should be able to use something like the above using the coordinates of vBC.

Any suggestions would be appreciated,

LMHmedchem
 
Last edited:
Physics news on Phys.org
In this post:

http://mathhelpboards.com/calculus-10/12-3-63-determine-smallest-distance-between-point-line-22704-post102528.html#post102528

I showed that if we have a line described by the two points:

$$P_1\left(x_1,y_1,z_1\right),\,P_2\left(x_2,y_2,z_2\right)$$

And the point:

$$P_0\left(x_0,y_0,z_0\right)$$

Then the minimum distance between them is given by:

$$D_{\min}=\frac{\left|\left(\vec{P_2}-\vec{P_1}\right)\times\left(\vec{P_1}-\vec{P_0}\right)\right|}{\left|\vec{P_2}-\vec{P_1}\right|}$$

I would use this formula to determine the distance of the head of the vector to be rotated from the axis of rotation, and then use the formula again to determine the locus of points all having this same distance from both the fixed tail and the axis of rotation. You will likely get two circles, one of which would be discarded.
 
MarkFL said:
I showed that if we have a line described by the two points:

$$P_1\left(x_1,y_1,z_1\right),\,P_2\left(x_2,y_2,z_2\right)$$

And the point:

$$P_0\left(x_0,y_0,z_0\right)$$

Then the minimum distance between them is given by:

$$D_{\min}=\frac{\left|\left(\vec{P_2}-\vec{P_1}\right)\times\left(\vec{P_1}-\vec{P_0}\right)\right|}{\left|\vec{P_2}-\vec{P_1}\right|}$$

Looking at the equation above,

View attachment 7610

does the numerator refer to the cross product of vectors (p2-p1) and (p1-p0)? Since the resulting distance Dmin is a scalar, it seems as if this should be a simple product, but "x" often means cross product when vectors are concerned so I thought I should ask. Since the shortest distance between the line and a point is a vector perpendicular to the line, the cross product also makes sense.

Sorry about not being very good with latex.

LMHmedchem
 

Attachments

  • point_line_distance.png
    point_line_distance.png
    1.9 KB · Views: 119
LMHmedchem said:
Looking at the equation above,

does the numerator refer to the cross product of vectors (p2-p1) and (p1-p0)? Since the resulting distance Dmin is a scalar, it seems as if this should be a simple product, but "x" often means cross product when vectors are concerned so I thought I should ask. Since the shortest distance between the line and a point is a vector perpendicular to the line, the cross product also makes sense.

Sorry about not being very good with latex.

LMHmedchem

The numerator is the magnitude of the indicated vectorial cross product. :)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 26 ·
Replies
26
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K