Fossil fuel reserves and home heating

  • Thread starter OmCheeto
  • Start date

OmCheeto

Gold Member
2,023
2,364
Given that:

When will fossil fuel reserves be diminished?
"The new formula is modified from the Klass model and thus assumes a continuous compound rate and computes fossil fuel reserve depletion times for oil, coal and gas of approximately 35, 107 and 37 years, respectively."
[bolding mine]​

36 years is within my "End of Life" scenario!!!!!!

So, say, right now, all new/sold homes have to have an installed thermal storage system, ala Drake Landing, and a 3 kw solar grid tied PV system. [I estimate the cost to be about $20,000 per home. Or about 10% of the values of the homes.]

What are problems with this scenario?

Aside from the fact that I can't solve partial differential equations. :oldmad:
And PVC pipe has a 140°F limit. :oldmad:
 
1,211
589
@essenmein in the other topic
I've been contemplating solar as well, however quite different, my loose plan of sorts is put insulated water reservoir in my basement, at least a few cubic m, likely some glycol mixture for freeze/corrosion protection, then app 10m2 collector, use to warm reservoir during day, then heat pump to take that low grade heat and heat house in winter. So totally off topic, but at ~1kW/m2 heatflux seems decent way to knock out some of the fermented dinos I'm burning today.
Does not worth it. If you try to use solar for heating, then you have to build a collector with excess size to gain some in winter: it'll work decent only during a few months in autumn and spring: then it'll just cook itself in summer. You can make more value from your money by insulating.
We decided to try a DIY solar air heating collector, 2m2 at a cost around 200EUR. Not bad, but not good either. We will just discard it after insulation is done.

What' cost effective and works are those cheap vacuum pipe based upper tank systems for warm water: they work almost all year.
 
Last edited:

tech99

Gold Member
1,590
513
The Sun provides electricity when you don't need it.
The proposed govt approach in the UK is for new homes to not be connected to the gas grid and to have a heat pump and a lot of insulation, to help keep warm in winter and avoid air con in summer.
 
308
130
@essenmein in the other topic

Does not worth it. If you try to use solar for heating, then you have to build a collector with excess size to gain some in winter: it'll work decent only during a few months in autumn and spring: then it'll just cook itself in summer. You can make more value from your money by insulating.
We decided to try a DIY solar air heating collector, 2m2 at a cost around 200EUR. Not bad, but not good either. We will just discard it after insulation is done.

What' cost effective and works are those cheap vacuum pipe based upper tank systems for warm water: they work almost all year.
I guess worth it is relative!

Ever since I moved to the east coast Canada, the heating/cooling thing has been an active side process in my head, we have all the heat we could want in summer, in fact too much that we some times pump it out, then, in winter, its the opposite.

So the first obvious question is "what would it take to store enough heat from summer for winter", kind of backwards to what we used to do with ice stores before refrigeration was invented.

It still boggles my mind that in the winter you see larger shops/malls etc have these "snowmelters", which is basically an oil burner to melt the snow dumped into it by a excavator because they don't know what else to do with it, then in summer the AC is working like crazy, which is run by electricity made by burning oil.

We need a heat capacitor, other wise known as water.

Basically I worked out the numbers, I would need to bury and insulate 3 40ft shipping containers, fill with salt water (plenty of that around), push heat from heat pump into this in the summer, and with an auxiliary 10kWhrs solar thermal collector (~10m2) and accounting for some heat loss should provide sufficient storage. Keep in mind if below frost line then there is ground heat as well. From memory if I allowed the storage medium to go through a phase change (ie freeze) then energy storage is increased a lot and that reduced the reservoir needs, but I'd have to dig through the numbers.

From a physics perspective the phase lag of the heat capacitor has to be such that sufficient heat is stored at the end of summer for the winter, and sufficient heat is removed to allow cooling in summer.
 
1,211
589
I guess worth it is relative!
More like subject of actual prices related to the project. I know about an actual seasonal storage project done by an AC/heatpump professional (so most machinery come as 'free'), and that was ended as 'did not worth it' compared to alternative solutions.

Of course, it is the best to dig through the numbers for yourself.

Ps.: candidate for a DIY topic? :wink:
 
308
130
More like subject of actual prices related to the project. I know about an actual seasonal storage project done by an AC/heatpump professional (so most machinery come as 'free'), and that was ended as 'did not worth it' compared to alternative solutions.

Of course, it is the best to dig through the numbers for yourself.

Ps.: candidate for a DIY topic? :wink:
Heh, I'll be the first to admit this is more of a thought process than an actual plan, subject to change on a whim. I'd be really interested if there is more info on the seasonal storage project you mentioned though.

I've built one or two things so part of the "value" for me at least is the fun aspect, people burn a lot of money on hobbies that do nothing other than occupy time. The problem for me at least is that this is not the only thing I find interesting and whether or not I end up doing something like this hinges on a lot of other things. :smile:
 

OmCheeto

Gold Member
2,023
2,364
@essenmein in the other topic

Does not worth it. If you try to use solar for heating, then you have to build a collector with excess size to gain some in winter: it'll work decent only during a few months in autumn and spring: then it'll just cook itself in summer.
Depends on where you live. It might work for some people. My sister in southern California, for instance.

You can make more value from your money by insulating.
:thumbup:

We decided to try a DIY solar air heating collector, 2m2 at a cost around 200EUR. Not bad, but not good either. We will just discard it after insulation is done.
I purchased the materials for a water thermal collector a few years back. I never quite finished the project, as, as you've said, it would only help for a few months out of the year.
What' cost effective and works are those cheap vacuum pipe based upper tank systems for warm water: they work almost all year.
I may have to research those some more. When I researched them years ago, they were quite expensive. Btw, they wouldn't "work almost all year" for me, based on my solar input.

The Sun provides electricity when you don't need it.
Not in the southern USA. I often wonder why they don't install enough solar panels to run their air conditioners in the summer.

Basically I worked out the numbers, I would need to bury and insulate 3 40ft shipping containers, fill with salt water (plenty of that around), push heat from heat pump into this in the summer, and with an auxiliary 10kWhrs solar thermal collector (~10m2) and accounting for some heat loss should provide sufficient storage. Keep in mind if below frost line then there is ground heat as well. From memory if I allowed the storage medium to go through a phase change (ie freeze) then energy storage is increased a lot and that reduced the reservoir needs, but I'd have to dig through the numbers.

From a physics perspective the phase lag of the heat capacitor has to be such that sufficient heat is stored at the end of summer for the winter, and sufficient heat is removed to allow cooling in summer.
Excellent! Sounds like you've done some maths. Have you looked into the cost of burying 3 x 40 ft shipping containers?

Ps.: candidate for a DIY topic? :wink:
I've been contemplating it myself. I want to design a DIY Drake Landing style storage unit for my house. Of course, I want it optimized for cost.

The problem for me at least is that this is not the only thing I find interesting and whether or not I end up doing something like this hinges on a lot of other things. :smile:
I spent all day yesterday trying to figure out why the black hole image was so interesting. Distractions! Curse them!

Anyways, I don't think it would be that difficult for everyone to do their own maths, to figure out their optimal system.
I've been simultaneously working on designs for my sister[latitude 33°, California coast] and myself[latitude 45.5°, 110 km east of the Pacific ocean]
It mostly involves looking at your heating and cooling bills, and determining cloud cover during the day.

But I believe I was most curious, in starting this thread, as to what kind of extra infrastructure would be required to transfer electricity around the nation, to cover cloudy days.
 

Baluncore

Science Advisor
6,326
1,867
But I believe I was most curious, in starting this thread, as to what kind of extra infrastructure would be required to transfer electricity around the nation, to cover cloudy days.
The reduction in availability of cheap liquid fuel for road transport will significantly increase the requirement for power from the grid to charge electric cars. What alternatives are there to the grid for this energy? We must consider very local PV and distant wind farms and massive solar arrays. The move to EHV DC for continental energy distribution can be expected to increase. As more energy must be transported for electric vehicle charging we can expect more transmission line capacity will need to be installed and that this will be EHV DC.

The installed storage capacity of a nation will increase as more EVs enter the field. The availability of used EV batteries for recycling as residential storage will remove many residences from the electric grid simply due to the cost of maintaining the grid connection. If the household has insufficient PV or insulation for it's own use, or owns and charges an EV, then it will benefit from continuing to have a grid connection.
 

OmCheeto

Gold Member
2,023
2,364
The reduction in availability of cheap liquid fuel for road transport will significantly increase the requirement for power from the grid to charge electric cars. What alternatives are there to the grid for this energy? We must consider very local PV and distant wind farms and massive solar arrays. The move to EHV DC for continental energy distribution can be expected to increase. As more energy must be transported for electric vehicle charging we can expect more transmission line capacity will need to be installed and that this will be EHV DC.

The installed storage capacity of a nation will increase as more EVs enter the field. The availability of used EV batteries for recycling as residential storage will remove many residences from the electric grid simply due to the cost of maintaining the grid connection. If the household has insufficient PV or insulation for it's own use, or owns and charges an EV, then it will benefit from continuing to have a grid connection.
Good points. Let's pretend it's 35 years in the future, and most everyone is driving an electric vehicle. According to a survey I did a few years back, if I'd owned an electric car, my daily consumption would have been about 6 kwh. So if we assume an average national 3 hours of sunlight, that adds 2 kw to each persons rooftop, for a total of 5 kw.

So, I guess we need a map of where everyone lives, and what their weather is like.
 

Baluncore

Science Advisor
6,326
1,867
We might consider that local PV will simply increase a local economy, while the greater grid will distribute national energy from new wind and solar farms. Then one way to estimate the increase in transmission line infrastructure required would be to look at the relative size of the electricity generation today, g, and the fossil fuel, f, used by motor vehicles today. If in the future EVs derive that energy from the grid, then grid infrastructure would need to increase by a factor of (g+f)/g.
 
308
130
In 35 years? Question 1 would be what is the dominant energy source? Are we talking distributed intermittent low energy density harvesting (solar/wind etc, this seems to be what everyone is presuming) or do we invent a power box that gives us 24/7 up time? (far better from a functional standpoint) Then how will most humans be living in he future? Clear trend is toward urban city living, likely in larger single buildings vs individual dwellings as population rises => this makes individual house hold energy collection not feasible for a large swath of the population. Then its likely our (western) per capita energy consumption in general will rise, maybe 2x what it is today? Even something innocuous like blockchain is already consuming small country levels of electricity. This is not even counting global energy needs as the rest of the population catches up to western living quality, if we think solving our current energy requirements is a challenge, the reality is we need to make 5-6x today's energy at minimum just to lift rest of the world out of energy poverty ignoring any future uses for said energy, remember energy is "capacity to do work", so off course its reasonable we would just keep using any excess capacity to do work on new and better things, more power is never enough sort of thing.

Will cars be battery electric, fuel cell or something else? How will aircraft work, trend is toward more flying not less, barring some momentous invention, battery electric doesn't seem to be feasible there. Will heavy transport/equipment be feasible as battery electric where currently diesel is the prime mover, think mining equipment, 18 wheelers excavators etc etc? What about shipping? ie ocean crossing freighters. Then there are some incredibly energy intensive industry, eg making aluminium, is it practical to supply this with solar, when today they typically park smelters next to dedicated GW rate hydro stations that run 24hrs a day because turning a smelter off is something you just don't do. What about future applications? What power source will run our moon or mars colony or space ships?

To me when you look at the overall problem energy harvesting seems like the wrong way to go, we need to concentrate on developing on demand high energy density sources.
 

OmCheeto

Gold Member
2,023
2,364
We might consider that local PV will simply increase a local economy, while the greater grid will distribute national energy from new wind and solar farms. Then one way to estimate the increase in transmission line infrastructure required would be to look at the relative size of the electricity generation today, g, and the fossil fuel, f, used by motor vehicles today. If in the future EVs derive that energy from the grid, then grid infrastructure would need to increase by a factor of (g+f)/g.
Luck would have it, that I would choose a "worst case scenario" to work on yesterday......
Ugh!
But, I think it's a good starting point.

Knowing that Los Angeles has a significant amount of electrical energy piped in from the northern border of Oregon, 1400 km away, I decided to analyze that.

ref: Pacific DC Intertie [wiki]​
The line capacity is 3,100 megawatts, which is enough to serve two to three million Los Angeles households and represents almost half (48.7%) of the Los Angeles Department of Water and Power (LADWP) electrical system's peak capacity.​


Not willing to do the maths, I interpolated my driving habits with those from LA, and found that it would require an extra 6 interties to power their EVs.

But as I said, this is the possibly the worst case scenario. 1 out of 17 Americans live in Los Angeles, and I've heard that they drive everywhere. Contrary to what I've heard about NYC, where 1 out of 14 Americans live, where apparently no one drives.

This is going to be complicated..........
 

OmCheeto

Gold Member
2,023
2,364
In 35 years? Question 1 would be what is the dominant energy source? Are we talking distributed intermittent low energy density harvesting (solar/wind etc, this seems to be what everyone is presuming) or do we invent a power box that gives us 24/7 up time? (far better from a functional standpoint) Then how will most humans be living in he future? Clear trend is toward urban city living, likely in larger single buildings vs individual dwellings as population rises => this makes individual house hold energy collection not feasible for a large swath of the population. Then its likely our (western) per capita energy consumption in general will rise, maybe 2x what it is today? Even something innocuous like blockchain is already consuming small country levels of electricity. This is not even counting global energy needs as the rest of the population catches up to western living quality, if we think solving our current energy requirements is a challenge, the reality is we need to make 5-6x today's energy at minimum just to lift rest of the world out of energy poverty ignoring any future uses for said energy, remember energy is "capacity to do work", so off course its reasonable we would just keep using any excess capacity to do work on new and better things, more power is never enough sort of thing.

Will cars be battery electric, fuel cell or something else? How will aircraft work, trend is toward more flying not less, barring some momentous invention, battery electric doesn't seem to be feasible there. Will heavy transport/equipment be feasible as battery electric where currently diesel is the prime mover, think mining equipment, 18 wheelers excavators etc etc? What about shipping? ie ocean crossing freighters. Then there are some incredibly energy intensive industry, eg making aluminium, is it practical to supply this with solar, when today they typically park smelters next to dedicated GW rate hydro stations that run 24hrs a day because turning a smelter off is something you just don't do. What about future applications? What power source will run our moon or mars colony or space ships?

To me when you look at the overall problem energy harvesting seems like the wrong way to go, we need to concentrate on developing on demand high energy density sources.
Could you please limit your questions to about 2 per day? Please. I've got gardening to do.....

"35 years?"


Although about climate change, the same goes for this topic; "I'll be dead, silly."

"dominant energy source? ...solar/wind..."

Yes. And hydro.
Though, as David J. C. MacKay pointed out in his "Without the Hot Air" book mentioned, there are some really interesting non-battery batteries available, ala, Drake Landing. Which is powered almost exclusively by solar.

hmmmm........
"I had a 6” wide and 100’ deep borehole put in a few years ago. It took a day - would this work with your system?"

@Guineafowl , if you don't mind me asking, how much did that cost you? And what were the conditions? Did they have to drill through granite, or was it just soil?
 
308
130
Could you please limit your questions to about 2 per day? Please. I've got gardening to do.....

"35 years?"


Although about climate change, the same goes for this topic; "I'll be dead, silly."

"dominant energy source? ...solar/wind..."

Yes. And hydro.
Though, as David J. C. MacKay pointed out in his "Without the Hot Air" book mentioned, there are some really interesting non-battery batteries available, ala, Drake Landing. Which is powered almost exclusively by solar.

hmmmm........
"I had a 6” wide and 100’ deep borehole put in a few years ago. It took a day - would this work with your system?"

@Guineafowl , if you don't mind me asking, how much did that cost you? And what were the conditions? Did they have to drill through granite, or was it just soil?
Note drakes landing is using solar thermal only for heating needs, electricity and transportation energy is provided using "conventional means".

https://en.wikipedia.org/wiki/Drake_Landing_Solar_Community

Interesting use of bore hole for thermal storage, I would have through conductive loss to the rest of the earth would be significant.
 
308
130
"dominant energy source? ...solar/wind..."

Yes. And hydro.
Though, as David J. C. MacKay pointed out in his "Without the Hot Air" book mentioned, there are some really interesting non-battery batteries available, ala, Drake Landing. Which is powered almost exclusively by solar.
I wouldn't consider hydro to be intermittent or low energy density, it fits more into the power box with 24/7 up time category. :wink:
 

gleem

Science Advisor
1,258
678
For the record in 2017 this was the energy use distribution in the US .
  • Electric power—38.1%
  • Transportation—28.8%
  • Industrial—22.4%
  • Residential—6.2%
  • Commercial—4.5%
Sources of energy :
241748




241752



We would need to increase other electric sources by 300% to replace fossil fuel electric sources. In general people have no idea of the scope of the problem that faces them in the future if they wait until they have no choice but to do something. There are currently 60 commercial nuclear power plant in the US generating 99 gW of electricity. Nuclear is probably the only acceptable continually running and environmentally clean power source. Can we build 180 nuclear plants in which one currently take about 5 years from ground breaking to energy production. If petroleum products run out in 40 Years can we commission up to one nuc plant a month when we finally realize we have to by 2035 . This only replaces current electricity production and does not include transitioning to an all electric economy. This does not take into consideration any results of global warming. The United Nations climate report from last year noted that to limit the global temperature rise to 1.5 deg C by 2050 we must reduce our fossil fuel consumption 40% by 2030 that is about 4% per year starting last year. Usage continues to increase.
 
308
130
We would need to increase other electric sources by 300% to replace fossil fuel electric sources. In general people have no idea of the scope of the problem that faces them in the future if they wait until they have no choice but to do something. There are currently 60 commercial nuclear power plant in the US generating 99 gW of electricity. Nuclear is probably the only acceptable continually running and environmentally clean power source. Can we build 180 nuclear plants in which one currently take about 5 years from ground breaking to energy production. If petroleum products run out in 40 Years can we commission up to one nuc plant a month when we finally realize we have to by 2035 . This only replaces current electricity production and does not include transitioning to an all electric economy. This does not take into consideration any results of global warming. The United Nations climate report from last year noted that to limit the global temperature rise to 1.5 deg C by 2050 we must reduce our fossil fuel consumption 40% by 2030 that is about 4% per year starting last year. Usage continues to increase.
Absolutely agree with everything lol. Its a staggering problem and I'm sure the NIMBY's would be out in force if you went and told them just exactly what it would mean to do everything with say wind.

Re building plants, we have to do what we've done with solar and to some extent wind, actually just everything we mass produce, go from building one or two highly custom large one off units to factories and automated production making lots of smaller ones.

To put into perspective, a one off CNC machined heatsink for our prototype inverter is about $2500 (lots of draft everywhere), that same heatsink in the intended process (HPDC) is about $3 when you make a few million of them per year.

So the problem is when comparing overnight capital cost of nuclear, they typically are for one of plants, for SMR overnight capital is about the same as off shore wind.

I think if you start getting into a line rate of say 10k reactor units per year, then you'd get into some pretty cost effective power sources. This is why I really like the kilopower concept from nasa, it really shows what we could do with nuclear if we wanted.

http://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-power-reactors/small-nuclear-power-reactors.aspx
 

Baluncore

Science Advisor
6,326
1,867
This is going to be complicated..........
Its a staggering problem and I'm sure the NIMBY's would be out in force if you went and told them just exactly what it would mean to do everything with say wind.
We would need to increase other electric sources by 300% to replace fossil fuel electric sources.
There is no question that this is a staggering problem.

There will be a solution and it will be a diverse mix of centralised and distributed, new and old. Our world as we know it now will certainly change. Building three times as much transmission infrastructure is only a small part of the problem.

We must rely on what we know now, and hope the problem will be reduced by new technology. We cannot rely on some as yet new invention. That would be like the bus load of free market economists going off the cliff, and expecting that a truck load of parachutes would immediately materialise next to them.
 

gleem

Science Advisor
1,258
678
This is why I really like the kilopower concept from nasa, it really shows what we could do with nuclear if we wanted.
I'm not sure that it would be wise to develop nuclear reactors that are too small. However 100 MW reactors under development by companies like NuScale of Oregon might be a better approach. They could be community power sources which could service around 10,000 homes using the power distribution system currently in place.
 
308
130
I'm not sure that it would be wise to develop nuclear reactors that are too small. However 100 MW reactors under development by companies like NuScale of Oregon might be a better approach. They could be community power sources which could service around 10,000 homes using the power distribution system currently in place.
Probably not, it was more just to show the possibility.

Maybe a reasonable more short term solution is to build 1-200MWt blocks that you plop in what ever number needed to replace the boilers in existing coal/oil/gas plants. Bit of a waste of perfectly good steam turbines and generators to just decommission them.
 

OmCheeto

Gold Member
2,023
2,364
For the record in 2017 this was the energy use distribution in the US .
  • Electric power—38.1%
  • Transportation—28.8%
  • Industrial—22.4%
  • Residential—6.2%
  • Commercial—4.5%
Sources of energy :
View attachment 241748



View attachment 241752
Though I'm sure the numbers are the same, I like the info-graphic put out by the Lawrence Livermore National Laboratory, a bit more:

energyflowchart875x500.jpg


Though, it doesn't list how residential energy use is broken down. For that I had to go to the EIA. I'd prefer to ignore Industrial and Commercial consumption in this thread, as I'm sure they've got lots of resources to figure out their own problems.

We would need to increase other electric sources by 300% to replace fossil fuel electric sources.
As you can imagine, I spent most of yesterday trying to get rid of that 300%.
Ehr mehr gerd........

Here's a picture of what I came up with, utilizing BTES [Borehole Thermal Energy Storage] and PV:

2019.04.13.electrical.energy.reduction.through.BTES.and.PV.png


The yellow "Space heating (carbon)" is my interpolation of the Lawrence Livermore data, and should be ignored, as far as "electrical" replacement goes. I couldn't believe that electrical "cooling" demands exceeded "heating" demands, but that kind of explained it. The "8" in the "Share of total" column is its ratio to electrical heating, and not its share of total.

The blue "25" numbers I pulled from the "HVAC fans and pumps" line. For any reasonably efficient system, there will always be pumping loads.

Anyways, the 39% [bottom right] number covers some of your "300%" number.
The most surprising number is the "Other uses". 31%!
My "get goldfish" comes from a comment I made to Zoobyshoe, when I discovered that my 55 watt fish tank heater accounted for a significant portion of his electrical usage.


"So I plugged my 20 gallon fish tank's power drains into my Kill-A-Watt meter, and discovered that it consumes more than half of your monthly energy: 46 kwh!
I am never again investing in guppies........
"
[ref]

In general people have no idea of the scope of the problem that faces them in the future if they wait until they have no choice but to do something.
So, it's a good thing we're discussing this?
There are currently 60 commercial nuclear power plant in the US generating 99 gW of electricity. Nuclear is probably the only acceptable continually running and environmentally clean power source. Can we build 180 nuclear plants in which one currently take about 5 years from ground breaking to energy production. If petroleum products run out in 40 Years can we commission up to one nuc plant a month when we finally realize we have to by 2035 . This only replaces current electricity production and does not include transitioning to an all electric economy. This does not take into consideration any results of global warming. The United Nations climate report from last year noted that to limit the global temperature rise to 1.5 deg C by 2050 we must reduce our fossil fuel consumption 40% by 2030 that is about 4% per year starting last year. Usage continues to increase.
Ugh. TMI!
 

anorlunda

Mentor
Insights Author
Gold Member
6,330
3,515
[Moderator note: I edited the title to better reflect what is being discussed.]
 
439
173
@Guineafowl , if you don't mind me asking, how much did that cost you? And what were the conditions? Did they have to drill through granite, or was it just soil?
The borehole was drilled 30m (100ft) deep, sleeved for the first 6m (20ft) with steel pipe and thereafter with perforated plastic. I think the diameter was 150mm (6”).

The rock started out as a sort of layered, soft mudstone which progressed to very hard granite (the poor man broke his expensive drill bit!)

It cost around £3500.
 
439
173
In fact, I have some pics:

The Mog is essentially a huge hammer drill, and the Land Rover towed in a large compressor, to run the hammer and blow out debris from the drill hole.



5BB0C05C-E606-44FD-97D1-069EB70111BA.jpeg
00077AEE-7AE3-4873-912E-6433EDEFBC2B.jpeg
 

Want to reply to this thread?

"Fossil fuel reserves and home heating" You must log in or register to reply here.

Physics Forums Values

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving

Hot Threads

Top