Fourier Series involving Hyperbolic Functions

Click For Summary

Discussion Overview

The discussion revolves around the Fourier series of a function defined with hyperbolic cosine, specifically f(x) = cosh(x-2π) for the interval [π, 3π]. Participants are addressing issues related to determining the parity of the function, calculating the Fourier complex form, and integrating by parts as part of their homework assignment.

Discussion Character

  • Homework-related
  • Mathematical reasoning
  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant questions whether the function is odd or even, initially concluding it is even, but later finding conflicting information from an online calculator.
  • Another participant suggests that the function's periodicity may affect the calculator's assessment of its parity.
  • There is a discussion about the correct approach to finding the Fourier complex form of the function, with some participants indicating that the real Fourier series formula was initially used instead of the complex form.
  • Participants discuss the need to integrate by parts to find the Fourier coefficients, with some seeking clarification on which function to integrate.
  • One participant confirms that the limits for integration should be from 0 to π, given the even nature of the function.
  • Another participant proposes the formula for the complex Fourier coefficients and seeks confirmation on its correctness.
  • Responses indicate that calculating the complex Fourier coefficients may be simpler than the real ones, eliminating the need for integration by parts.

Areas of Agreement / Disagreement

There is some agreement among participants regarding the function being even, but there is no consensus on the correct method for determining the Fourier series or the implications of the function's periodicity. The discussion remains unresolved on several technical aspects.

Contextual Notes

Participants express uncertainty about the integration process and the implications of the function's definition over different intervals. There are also unresolved questions regarding the application of the Fourier series formulas and the handling of the function's periodicity.

Sharya19
Messages
21
Reaction score
0
Hello everyone first time here. don't know if it's the correct group... Am having some issues wiz my maths homework that going to count as a final assessment. Really Really need help.
The function (f), with a period of 2π is : f(x) = cosh(x-2π) if x [π;3π]..
I had to do a graph as the first part for the interval of [-π;5π] so that part is ok. PLEASE HELP WITH THE OTHER ISSUES...
NOTE: cosh x =(e^x + e^-x)/2

1st - Have to find out if the function is an odd or even parity... i worked it out and my answer is an even parity... But since i like to cross check(before moving on the next part) on the online calculator, it says that the function is neither odd nor even... Can someone pleasez help and then tell me How to proceed for the Fourier complex form of the function (f) if the answer is neither odd or even?

2nd - Have to find out about the Fourier complex form of the function (f).. Since i found it even parity so i used those function as seen in the picture. For ao i already did it, for the an please help wiz the integration by parts... The T in the formula i replaced by 2pi... Is it the correct way to do it?
Formula for pair function.jpg


3rd - The Part Four in Roman Numeral(iv), that a total black out for me
Part 5.jpg

PLZ PLZ PLZ really need help...
 
Physics news on Phys.org
Sharya19 said:
Hello everyone first time here. don't know if it's the correct group... Am having some issues wiz my maths homework that going to count as a final assessment. Really Really need help.
The function (f), with a period of 2π is : f(x) = cosh(x-2π) if x [π;3π]..
I had to do a graph as the first part for the interval of [-π;5π] so that part is ok. PLEASE HELP WITH THE OTHER ISSUES...
NOTE: cosh x =(e^x + e^-x)/2

1st - Have to find out if the function is an odd or even parity... i worked it out and my answer is an even parity... But since i like to cross check(before moving on the next part) on the online calculator, it says that the function is neither odd nor even... Can someone pleasez help and then tell me How to proceed for the Fourier complex form of the function (f) if the answer is neither odd or even?

2nd - Have to find out about the Fourier complex form of the function (f).. Since i found it even parity so i used those function as seen in the picture. For ao i already did it, for the an please help wiz the integration by parts... The T in the formula i replaced by 2pi... Is it the correct way to do it?
View attachment 11183

3rd - The Part Four in Roman Numeral(iv), that a total black out for me
View attachment 11182
PLZ PLZ PLZ really need help...
Hi Sharya19 and welcome to MHB! Since this assignment is for assessment, we ought not to give you too much help. But here are a few hints.

I agree with you that the function is even. (The online calculator may possibly not be able to handle the way that the function is defined as being periodic with period $2\pi$, with the initial period being the interval $[\pi,3\pi]$.)

The question asks for the complex form of the Fourier series, but you have given the formula for the real Fourier series. Assuming that you want to work with the real Fourier series, you will need to find integrals of the form $$\int_0^\pi \cosh x\cos(nx)\,dx.$$ To evaluate that you need to integrate by parts twice, as follows: $$\begin{aligned}\int_0^\pi \cosh x\cos(nx)\,dx &= \Bigl[\sinh x\cos(nx)\Bigr]_0^\pi + n\!\!\int_0^\pi \sinh x\sin(nx)\,dx \\ &= (-1)^n\sinh\pi + n\Bigl[\cosh x\sin(nx)\Bigr]_0^\pi - n^2\!\!\!\int_0^\pi \cosh x\cos(nx)\,dx.\end{aligned}$$ It follows that $$(1 + n^2)\!\!\int_0^\pi \cosh x\cos(nx)\,dx = (-1)^n\sinh\pi.$$ If you then use the fact that the function is equal to the sum of its Fourier series, you can evaluate the function at a suitable point (say at $x = \pi$) and you will get a formula that involves $\displaystyle \sum_{n=0}^\infty \frac1{n^2+1}.$
 
Opalg said:
To evaluate that you need to integrate by parts twice, as follows:

Hello. Thanks for the clarification on the even parity. The part where it says u need to integrate by part... sorry if it sound stupid but i still can't grasp it. do i integrate cosh(x) or cosh(x-2pi)... This part is so tough to understand... pleasez help...
 
Sharya19 said:
Hello. Thanks for the clarification on the even parity. The part where it says u need to integrate by part... sorry if it sound stupid but i still can't grasp it. do i integrate cosh(x) or cosh(x-2pi)... This part is so tough to understand... pleasez help...
The function has period $2\pi$, which means that $f(x-2\pi) = f(x)$. Also, the function takes the same values on the interval $[-\pi,\pi]$ as it does on the interval $[\pi,3\pi]$. To find the Fourier series, it is easiest to base the calculation on the fact that $f$ satisfies $f(x) = \cosh x$ on the interval $[-\pi,\pi]$.
 
Opalg said:
The function has period $2\pi$, which means that $f(x-2\pi) = f(x)$. Also, the function takes the same values on the interval $[-\pi,\pi]$ as it does on the interval $[\pi,3\pi]$. To find the Fourier series, it is easiest to base the calculation on the fact that $f$ satisfies $f(x) = \cosh x$ on the interval $[-\pi,\pi]$.
Sorry if the question sound stupid again... My limit is pi to zero?
 
Sharya19 said:
Sorry if the question sound stupid again... My limit is pi to zero?
Yes, the function is even, so you can take twice the integral over the interval $[0,\pi]$ to get the integral over $[-\pi,\pi]$.
 
Opalg said:
Yes, the function is even, so you can take twice the integral over the interval $[0,\pi]$ to get the integral over $[-\pi,\pi]$.
Thanks a lot dr
 
Opalg said:
Yes, the function is even, so you can take twice the integral over the interval $[0,\pi]$ to get the integral over $[-\pi,\pi]$.
Hello. sorry to disturb again. so if i have to find the complex form of the Fourier serie for the function (f) above.
The equation will be cn=1/2pi integral (pi to -pi) f(x) e^inx dx?? Please confirm..
 
Sharya19 said:
Hello. sorry to disturb again. so if i have to find the complex form of the Fourier serie for the function (f) above.
The equation will be cn=1/2pi integral (pi to -pi) f(x) e^inx dx?? Please confirm..
Yes. You will find that it is much easier to calculate the complex Fourier coefficients than the real ones. It is no longer necessary to use integration by parts.
 
  • #10
Opalg said:
Yes. You will find that it is much easier to calculate the complex Fourier coefficients than the real ones. It is no longer necessary to use integration by parts.
Thanks a lot dr. God bless u
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 13 ·
Replies
13
Views
28K
  • · Replies 23 ·
Replies
23
Views
6K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 12 ·
Replies
12
Views
12K
  • · Replies 9 ·
Replies
9
Views
3K