Fourier series, periodic function for a string free at each end

Click For Summary
SUMMARY

The discussion centers on the application of Fourier series to model a periodic function for a massless string fixed at both ends. The participants analyze the boundary conditions and derive the Fourier coefficients using the formula for \( A_n \). They conclude that the Fourier basis functions \( \cos\left(\frac{n \pi x}{L}\right) \) satisfy the zero slope conditions at the endpoints, while the initial shape of the string can be approximated by \( A\sin\left(\frac{n\pi x}{L}\right) \). The necessity of using odd \( n \) values for non-zero coefficients \( A_n \) is also established.

PREREQUISITES
  • Understanding of Fourier series and their applications in solving boundary value problems.
  • Familiarity with trigonometric functions, particularly sine and cosine functions.
  • Knowledge of calculus, specifically integration techniques for finding Fourier coefficients.
  • Basic concepts of wave mechanics and string vibrations.
NEXT STEPS
  • Study the derivation of Fourier coefficients in depth, focusing on the formula \( A_n = \frac{2}{L}\int_0^L f(x,0) \cos\left(\frac{n \pi x}{L}\right) dx \).
  • Explore the implications of boundary conditions in wave equations and their solutions.
  • Investigate the properties of odd and even functions in the context of Fourier series.
  • Review applications of Fourier series in physics, particularly in wave mechanics and vibrations of strings.
USEFUL FOR

Students and professionals in mathematics, physics, and engineering fields, particularly those focusing on wave mechanics, string theory, and Fourier analysis.

Redwaves
Messages
134
Reaction score
7
Homework Statement
A string of length = L with a mass = M fixed to a ring at each end, but the ring is free to move. The rings are massless and we neglected the gravity.
At t = 0 the rings are at y = 0 and the string has the same form that ##y(x,0) = Asin(\frac{2 \pi x}{L})##
We release the rings at t = 0

Find ##f(x)## from initials and boundaries conditions
Relevant Equations
##f(x) = \frac{A_0}{2} + \sum A_n cos(\frac{n2 \pi x}{P} ) + \sum B_n sin(\frac{2n \pi x}{P}) )##
From the statement above, since the ring is massless, there's no force acting vertically on the rings. Thus, the slope is null.

##\frac{\partial y(0,0)}{\partial x} = \frac{\partial y(L,0)}{\partial x} = 0##

##\frac{\partial y(0,0)}{\partial x} = A\frac{2 \pi}{L}cos(\frac{2 \pi 0}{L}) = \frac{\partial y(L,0)}{\partial x} = A\frac{2 \pi}{L}cos(\frac{2 \pi L}{L}) = 0##

Here I have a problem, since ##A\frac{2 \pi}{L}cos(\frac{2 \pi 0}{L}) = 0## only If A = 0

Thus, ##f(x) = \frac{A_0}{2} + \sum 0 cos(\frac{n2 \pi x}{P} ) + \sum B_n sin(\frac{2n \pi x}{P}) ) = f(x) = \frac{A_0}{2} + \sum B_n sin(\frac{2n \pi x}{P}) )##

Since cos is a symmetric function, from the graph I made, the period should be 2L, since at every "0" and "L" the string must be symmetric at each side.

Now, with the initials conditions (position and velocity) .
I don't fully understand the periodic function. Is the second sum in the function about the initials conditions?

Here's what I got.
Hsm9yxb.png


Edit: Can I say that the periodic function is
##f(x) = \frac{A_0}{2} + \sum_1^{\infty} A_n cos(\frac{n2 \pi x}{2L} ) + \sum_1^{\infty} B_n sin(\frac{2n \pi x}{2L})##
 
Last edited:
Physics news on Phys.org
The set of functions ##\cos(\frac {n 2\pi x}{P})## for ##n = 1, 2, 3, ...## with ##P = 2L## satisfy the boundary conditions of zero slope at ##x = 0## and ##x = L##. So, these would be the Fourier basis functions for this problem. Since ## P = 2L##, you may write these as ##\cos(\frac {n \pi x}{L})##.

The initial shape of the string is ##A\sin(\frac {n\pi x}{L})##. This function has nonzero slope at the endpoints. Thus, if you release the string with this initial shape, the tension in the string would cause the massless rings to have infinite acceleration! :oldeek: So, it's not really an acceptable shape. However, you can imagine that the initial shape of the string approximates the shape ##A\sin(\frac {n\pi x}{L})## to a high degree of approximation (except that very close to the endpoints the string bends to have zero slope).

So, the question is whether or not you can approximate ##A\sin(\frac {n\pi x}{L})## (which has nonzero slope at the ends) as a Fourier series using the functions ##\cos(\frac {n\pi x}{L})## (which have zero slope at the ends). The answer is yes.

See if you can determine the coefficients ##A_n## so that ##\sum A_n\cos(\frac {n\pi x}{L}) =A\sin(\frac {n\pi x}{L})##.
 
Using the formula
##A_n = \frac{2}{p}\int_0^{P} f(x,0) cos(\frac{n \pi x }{L}) dx##
##A_n = \frac{1}{L}\int_0^{2L} d sin(\frac{2 \pi x}{L}) cos(\frac{n \pi x }{L}) dx##

##A_n = \frac{d}{L}\int_0^{2L} \frac{1}{2}[ sin(\frac{(2+n)\pi x}{L}) - sin(\frac{(-2+n)\pi x}{L})] dx##

I get 0 for ##A_n## which isn't correct.

I think I have to split the integral into 2 parts. Because ##sin(\frac{2 \pi x}{L})## isn't symmetric.
 
Last edited:
Redwaves said:
##A_n = \frac{2}{p}\int_0^{P} f(x,0) cos(\frac{n \pi x }{L}) dx##
I think this should be ##A_n = \frac{2}{L}\int_0^L f(x,0) \cos(\frac{n \pi x}{L}) dx##
 
The formula ##A_n = \frac{2}{P}\int_0^P f(x,0) \cos(\frac{n \pi x}{L}) dx## will give the same result as ##A_n = \frac{2}{L}\int_0^L f(x,0) \cos(\frac{n \pi x}{L}) dx## if you use the "extended" function ##f(x,0)## that you graphed in your first post.

Note that for ##0<x<L##, ## f(x,0) =A\sin(\frac{2 \pi x}{L})## but for ##L < x < 2L##, ## f(x,0) = -A\sin(\frac{2 \pi x}{L})##.

So, ## \frac{2}{P}\int_0^P f(x,0) \cos(\frac{n \pi x}{L}) dx = ##

## \frac{2}{2L}\int_0^{2L} f(x,0) \cos(\frac{n \pi x}{L}) dx = ##

##\frac{1}{L}\left[ \int_0^L A\sin(\frac{2 \pi x}{L}) \cos(\frac{n \pi x}{L}) dx + \int_L^{2L}-A\sin(\frac{2 \pi x}{L}) \cos(\frac{n \pi x}{L}) dx \right] ##

The second integral yields the same result as the first integral. So, the overall result can be written simply as

##\frac{2}{L}\int_0^L A\sin(\frac{2 \pi x}{L}) \cos(\frac{n \pi x}{L}) dx = \frac{2}{L}\int_0^L y(x,0) \cos(\frac{n \pi x}{L}) dx ##
 
  • Like
Likes   Reactions: Redwaves
So, n must be odd, because if n is even ##A_n## = 0, right?
 
Redwaves said:
So, n must be odd, because if n is even ##A_n## = 0, right?
Yes, that's right.
 
Thanks! it's so much clearer.
 
Redwaves said:
Thanks! it's so much clearer.
which book is that exercise from?
 

Similar threads

Replies
18
Views
1K
Replies
8
Views
1K
Replies
28
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K