Lots of works about the high-order harmonic generation in the intense laser-atom physics obtain the harmonic spectrum by Fourier transformation of the dipole moment d(t) (=[tex]\int[/tex][tex]\varphi\varphi^{*}[/tex]z):(adsbygoogle = window.adsbygoogle || []).push({});

p([tex]\omega[/tex])=|[tex]\frac{1}{tf-ti}[/tex][tex]\int d(t)exp(-i\omega)[/tex]dt|[tex]^{2}[/tex]

Here, I want to use the Monte-Carlo method to generate the Harmonics. The trajectory r(t) of an electron in 3D Hydrogen system can be get. Then how can I obtain the harmonic spectrum for one electron? Can I use the Fourier transformation of r(t) directly?

p([tex]\omega[/tex])=|[tex]\frac{1}{tf-ti}[/tex][tex]\int r(t)*cos(\theta)exp(-i\omega)[/tex]dt|[tex]^{2}[/tex]

Thank you!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Fourier transformation: power spectrum

**Physics Forums | Science Articles, Homework Help, Discussion**