Fraction of light reflected inside a diamond

Click For Summary

Homework Help Overview

The discussion revolves around the phenomenon of total internal reflection in the context of light interacting with a diamond. Participants are exploring the application of Fresnel equations to calculate the reflection coefficients for light at specific angles of incidence.

Discussion Character

  • Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • The original poster attempts to calculate the reflection coefficients for both s and p-polarized light using Fresnel equations but encounters discrepancies in their results. Participants question the values used for the transmitted angle and whether Fresnel's equations remain applicable beyond the critical angle.

Discussion Status

Participants are actively engaging with the problem, raising questions about the validity of Fresnel's equations at angles exceeding the critical angle. There is a recognition that the transmitted angle may not be zero and that the reflection coefficients become complex, indicating a productive exploration of the topic.

Contextual Notes

There is an ongoing discussion about the critical angle for diamond and the implications for the reflection coefficients when the incident angle exceeds this threshold. Participants are considering the nature of the angles involved and the definitions of the parameters in the context of total internal reflection.

Davidllerenav
Messages
424
Reaction score
14
Homework Statement
Diamonds have an index of refraction of n = 2.42 which allows total internal
reflection to occur at relatively shallow angles of incidence. What fraction of the light reflects for internal angles ##\theta_i = 40.5^°## and ##\theta_i = 50.6^°##?
Relevant Equations
Fresnel equations
Snell's law
So i do now that it is a case of total internal reflection, but i didn't get R=1 for ##\theta_i=40.5^°##. I used the Fresnel equations for both s and p-polarized light and for s I got ##r_s=\frac{n_i\cos\theta_i-n_t\cos\theta_t}{n_i\cos\theta_i+
n_t\cos\theta_t}=0.296## using ##n_i=2.42## and ##n_t=1##. For p I got ##r_p=\frac{n_i\cos\theta_t-n_t\cos\theta_i}{n_i\cos\theta_t+
n_t\cos\theta_i}=0.522##. What am I doing wrong?
 
Physics news on Phys.org
What values are you using for ##\theta_t##?
 
nasu said:
What values are you using for ##\theta_t##?
Well since both incident angles are greater than the critical angle ##\theta_c=24.4^°##, then ##\theta_t=0##.
 
Are Fresnel's equations still valid beyond the critical angle?
 
haruspex said:
Are Fresnel's equations still valid beyond the critical angle?
I thought so, but reading the chapter again I think not because the transmited angle isn't in facr zero, but complex.
 
Davidllerenav said:
Well since both incident angles are greater than the critical angle ##\theta_c=24.4^°##, then ##\theta_t=0##.
No, the angle is not zero. For angles larger than the critical angle there is no real ##\theta_c ##. The Fresnel reflection coefficient becomes a complex number with a magnitude of 1 for any angle larger than the critical angle. The phase of the complex coefficient still changes with the angle but the magnitude doesn't. Fresnel's equations are still valid. They can be written in terms of just incident angle and index of refraction so there is no problem with the transmission angle.
 
  • Like
Likes   Reactions: Davidllerenav

Similar threads

Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
18
Views
4K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
13K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K