MHB Calculate Fractional Part of $x$ in $x^2+x=1$

  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    fractional
AI Thread Summary
The discussion centers on solving the equation \(\{x^2\} + \{x\} = 1\), where \(\{x\}\) represents the fractional part of \(x\). Two solutions from the quadratic equation \(x^2 + x = 1\) are identified: \(x = -\frac{\sqrt{5}+1}{2}\) and \(x = \frac{\sqrt{5}-1}{2}\). However, it is noted that only the second solution satisfies the original equation, while the first does not. There is also debate regarding the definition of the fractional part function for negative values of \(x\), with a consensus that positive integer solutions generally satisfy the equation unless they are integers themselves. The complexity of finding all solutions to \(\{x^2\} + \{x\} = 1\) is acknowledged, with references to multiple solutions in specific ranges.
juantheron
Messages
243
Reaction score
1
Calculate $x$ in $\{x^2\}+\{x\} = 1$

where $\{x\} = $ fractional part of $x$
 
Mathematics news on Phys.org
jacks said:
Calculate $x$ in $\{x^2\}+\{x\} = 1$

where $\{x\} = $ fractional part of $x$

Hi jacks, :)

According to Wolfram, both solutions of the quadratic equation, \(x^2+x=1\) are solutions of \(\{x^2\}+\{x\} = 1\). That is,

\[x=-\frac{\sqrt{5}+1}{2}\mbox{ and }x=\frac{\sqrt{5}-1}{2}\]

are solutions of \(\{x^2\}+\{x\} = 1\).

Kind Regards,
Sudharaka.
 
Sudharaka said:
Hi jacks, :)

According to Wolfram, both solutions of the quadratic equation, \(x^2+x=1\) are solutions of \(\{x^2\}+\{x\} = 1\). That is,

\[x=-\frac{\sqrt{5}+1}{2}\mbox{ and }x=\frac{\sqrt{5}-1}{2}\]

are solutions of \(\{x^2\}+\{x\} = 1\).

Kind Regards,
Sudharaka.

The first solution does not satisfy the original equation. I'm not exactly sure what WolframAlpha is doing there, but I don't think it's solving the original equation. The second solution does satisfy the original equation.

[EDIT]: See posts below for more clarification.
 
Last edited:
Forgetting for the moment any problems about negative values of $x$, notice that for any positive integer $n$, the positive solution of the equation $x^2+x = n$ will satisfy $\{x^2\} + \{x\} = 1$, unless that solution is an integer.
 
Ackbach said:
The first solution does not satisfy the original equation. I'm not exactly sure what WolframAlpha is doing there, but I don't think it's solving the original equation. The second solution does satisfy the original equation.

[EDIT]: See posts below for more clarification.

Yes, as chisigma had mentioned there is an ambiguity in the definition, however taking \(\{x\}=x- \lfloor x \rfloor\,\forall x\in\Re\), both solutions satisfy the original equation.

Opalg said:
Forgetting for the moment any problems about negative values of $x$, notice that for any positive integer $n$, the positive solution of the equation $x^2+x = n$ will satisfy $\{x^2\} + \{x\} = 1$, unless that solution is an integer.

Indeed, but just for the curiosity, can you explain how you thought about this. :)

If we take, \(\{x\}=x- \lfloor x \rfloor\,\forall x\in\Re\) as the definition of \(\{x\}\), I think that all the roots(except integers) of the equations \(x^2+x = n\) are solutions of the original equation. That is,

\[x=\frac{-1\pm\sqrt{4\,n+1}}{2}\mbox{ where }n\in\mathbb{Z}\, \wedge \,x\notin\mathbb{Z}\]

are solutions of \(\{x^2\} + \{x\} = 1\). Furthermore by looking at this, I feel that these seem to be the only solutions of the original equation.

Kind Regards,
Sudharaka.
 

Similar threads

Replies
2
Views
2K
Replies
6
Views
220
Replies
1
Views
1K
Replies
5
Views
1K
Replies
10
Views
2K
Replies
4
Views
2K
Replies
2
Views
2K
Replies
7
Views
2K
Replies
3
Views
3K
Back
Top