Frame Transformation in rigid bodies

Click For Summary
SUMMARY

This discussion focuses on frame transformations in rigid body dynamics, specifically how to convert linear and angular velocities between two reference frames, F_1 and F_2. The transformation T is critical, as it can represent either an active or passive transformation, necessitating the use of its inverse for accurate calculations. The transformation of velocities is governed by the equations \(v_2 = v_1 + \omega_1 \times r\) for linear velocity and \(\omega_2 = R \omega_1\) for angular velocity, where \(R\) is the rotation matrix. Precision in notation and understanding the handedness of coordinate systems is essential for correct application.

PREREQUISITES
  • Understanding of rigid body dynamics and kinematics
  • Familiarity with rotation matrices and their application
  • Knowledge of linear and angular velocity concepts
  • Basic grasp of coordinate systems and transformations
NEXT STEPS
  • Study the principles of rigid-body kinematics in detail
  • Learn about the properties and applications of rotation matrices
  • Explore the implications of handedness in coordinate systems
  • Investigate advanced topics in dynamics related to frame transformations
USEFUL FOR

Engineers, robotics developers, and students in mechanical engineering who are working with rigid body dynamics and require a clear understanding of frame transformations and kinematics.

Dunky
Messages
9
Reaction score
1
I'm using rigid body dynamics/kinematics in robotics stuff but I don't have a background in mechanics, I'm interested in understanding the kinematics of frame transformations for rigid bodies.

Suppose we have two reference frames fixed on a rigid body, F_1 and F_2 and a transformation T which takes F_1 to F_2. Suppose we have the linear and angular velocities of the object wrt F_1, how do we get them wrt to F_2?
 
Physics news on Phys.org
You will want to search for rigid-body kinematics. The topic is straight forward, but requires rigor in notation to avoid mixing up the multitude of ways the direction of transform can be interpreted, and this notation often varies wildly so be careful when comparing sources. This notation complexity is especially true if you also want to venture into dynamics.

However, with the right assumptions what you seek is simple enough.
Assume you have a constant coordinate change rotation ##R^{B\gets C}## for two Cartesian coordinate systems B and C then any vector ##v## (including linear and angular velocity and acceleration) coordinated in C as ##v^C## transforms like ##v^B = R^{B\gets C} v^C##. In case you are using 4x4 matrices note you only need the 3x3 rotation part to transform vectors.

I note you said "a transformation T which takes F_1 to F_2" and this sounds to me like T could be an active transform and not a passive coordinate change (because the transform "moves" frames not changing coordinates). If so, the coordinate change you are looking for is the inverse of T. In a more rigorous notation that means ##T^{F_2\gets F_1} = (T_{F_2\gets F_1}^{F_1})^{-1}## where names in superscript indicate (passive) coordinate systems and subscript indicate (active) frames.
 
Last edited:
Dunky said:
...two reference frames fixed on a rigid body, F_1 and F_2 ... linear and angular velocities of the object wrt F_1
Since F_1 is fixed to the object, the velocities of the object wrt F_1 are always zero, which is probably not what you mean. As @Filip Larsen noted, you have to be very precise and explicit in describing what the transformations do.
 
Filip Larsen said:
Assume you have a constant coordinate change rotation ##R^{B\gets C}## for two Cartesian coordinate systems B and C then any vector ##v## (including linear and angular velocity and acceleration) coordinated in C as ##v^C## transforms like ##v^B = R^{B\gets C} v^C##.
@Dunky Just be careful if B and C have different handedness (left hand vs right hand system). Since angular velocity and angular acceleration are pseudo-vectors, they need to be negated when being transformed like that. This doesn't apply to linear velocity tough.
 
  • Like
Likes   Reactions: Filip Larsen
To obtain linear and angular velocities of an object relative to the second frame \(F_2\) based on data on velocities relative to the first frame \(F_1\), you can use formulas for changing kinematics. The linear speed \(v_2\) of the object relative to \(F_2\) is equal to \(v_2 = v_1 + \omega_1 \times r\), where \(v_1\) is the linear speed of the object relative to \(F_1\), \(\omega_1 \) is the angular velocity of the object relative to \(F_1\), and \(r\) is the distance vector from the beginning of \(F_1\) to the beginning of \(F_2\) in the system \(F_1\). The angular velocity of the object relative to \(F_2\), \(\omega_2\), is equal to \(\omega_2 = R \omega_1\), where \(R\) is the rotation matrix that transforms vectors from \(F_1\) to \( F_2\).
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 10 ·
Replies
10
Views
9K
  • · Replies 86 ·
3
Replies
86
Views
8K
  • · Replies 4 ·
Replies
4
Views
2K