Frames of Reference: Using tie-downs to hold a load on a flatbed truck

AI Thread Summary
The discussion focuses on calculating forces acting on a load secured with tie-downs on a flatbed truck. A net force of 6500 was determined, indicating that kinetic friction is at play since it exceeds static friction. Participants clarify the equations for net forces in both x and y directions, emphasizing the importance of including the normal force and the effect of tie-down straps. The correct expression for the force of friction is confirmed as Ff = coefficient of friction * (Fstraps + Fgravity). Understanding these forces is crucial to prevent the load from slipping during transport.
daisy7777
Messages
16
Reaction score
1
Homework Statement
A flatbed truck has a 2000.0 kg component of a pre-fab house placed on its flatbed. If the coefficient of static and kinetic friction, respectively, between the pallet and the flatbed is 0.150 and 0.100, and the truck starts at rest and accelerates to a speed of 65.0 km/h over a distance of 50.0 m. The component is strapped down by tie straps wrapped over the top of the house component so as to push down on it; with what force must the tie straps push down on the house component in order to prevent the truck from slipping while accelerating?
Relevant Equations
Fnet = ma, Ff = coeff of friction * normal force, Fnet = 0 when not accelerating
I calculated the net force. I got 6500. I determined this is bigger than the force of static friction so the force of friction acting on the object must be kinetic. From there I got kinda lost. I know for the component to not slip Fnetx = 0 and Fnety = 0. But I'm not sure what to do from there? Is it (in the y-dir) 0 =Fn - Fstraps - Fg? Or (in the x-dir) 0=Ff+Ffict-Fstraps?
 
Physics news on Phys.org
daisy7777 said:
this is bigger than the force of static friction
What is the normal force? Don't forget the straps.
 
haruspex said:
What is the normal force? Don't forget the straps
Wait so the force of friction is gonna be Ff = coeff of friction * (Fstraps + Fgravity)?
 
daisy7777 said:
Wait so the force of friction is gonna be Ff = coeff of friction * (Fstraps + Fgravity)?
Yes. If the magnitude of the normal force were only Fg then you would have Fg acting up on the slab but Fg+straps acting down on it, so it would be accelerating downwards!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top