liwi
- 2
- 0
Hi!
For every finitely additive measure \eta on natural numbers, all \eta-null sets obviously form an ideal.
Why there is no finitely additive measure on natural numbers whose null sets form the Fréchet ideal?
Thanks, liwi
For every finitely additive measure \eta on natural numbers, all \eta-null sets obviously form an ideal.
Why there is no finitely additive measure on natural numbers whose null sets form the Fréchet ideal?
Thanks, liwi