Free fall from rest at a particular radius to the central singularity

happyparticle
Messages
490
Reaction score
24
Homework Statement
Proper time from rest at a particular radius to the central singularity
Relevant Equations
Eddington–Finkelstein coordinates
##ds^2 = - (1-\frac{2M}{r}) dt^2 + 2dtdr +r^2 d\Omega^2##
I have this problem:
1743564221242.png

First of all, I would like to have an equation for the proper time.
I was using the Eddington-Finkelstein coordinates in the Schwarzschild metric : $$ds^2 = - (1-\frac{2M}{r}) dt^2 + 2dtdr +r^2 d\Omega^2$$
Knowing that the observer falls radially, thus ##d\phi = d\theta = 0##.

Also, ##ds^2 = -d\tau^2 ## and after a little algebra we get:
$$1 = (1-\frac{2M}{r}) (\frac{dt}{d\tau})^2 - 2 \frac{dt dr}{d\tau^2}$$

I'm pretty stuck here. I found here and there that the equation for the proper time in this situation should be ##\tau = \frac{\pi r_0^{3/2}}{2\sqrt{2M}}##.

I guess I need to find the value for ##\frac{dt}{d\tau}##.
 
Last edited:
Physics news on Phys.org
happyparticle said:
I was using the Eddington-Finkelstein coordinates in the Schwarzschild metric : $$ds^2 = - (1-\frac{2M}{r}) dt^2 + 2dtdr +r^2 d\Omega^2$$
Knowing that the observer falls radially, thus ##d\phi = d\theta = 0##.

Also, ##ds^2 = -d\tau^2 ## and after a little algebra we get:
$$1 = (1-\frac{2M}{r}) (\frac{dt}{d\tau})^2 - 2 \frac{dt dr}{d\tau^2}$$
OK

happyparticle said:
I'm pretty stuck here.

I guess I need to find the value for ##\frac{dt}{d\tau}##.
You can get an expression for ##\frac{dt}{d\tau}## by noting that free fall is motion along a geodesic. The equations of motion for a geodesic can be found using a variational principle. For example, see the first page of these notes. Here, they are working in Schwarzschild coordinates and arrive at the bottom of the page with an expression for ##\dot t \equiv \dfrac {dt}{d \tau}##. You can apply the same method when using Eddington-Finkelstein coordinates.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top