happyparticle
- 490
- 24
- Homework Statement
- Proper time from rest at a particular radius to the central singularity
- Relevant Equations
- Eddington–Finkelstein coordinates
##ds^2 = - (1-\frac{2M}{r}) dt^2 + 2dtdr +r^2 d\Omega^2##
I have this problem:
First of all, I would like to have an equation for the proper time.
I was using the Eddington-Finkelstein coordinates in the Schwarzschild metric : $$ds^2 = - (1-\frac{2M}{r}) dt^2 + 2dtdr +r^2 d\Omega^2$$
Knowing that the observer falls radially, thus ##d\phi = d\theta = 0##.
Also, ##ds^2 = -d\tau^2 ## and after a little algebra we get:
$$1 = (1-\frac{2M}{r}) (\frac{dt}{d\tau})^2 - 2 \frac{dt dr}{d\tau^2}$$
I'm pretty stuck here. I found here and there that the equation for the proper time in this situation should be ##\tau = \frac{\pi r_0^{3/2}}{2\sqrt{2M}}##.
I guess I need to find the value for ##\frac{dt}{d\tau}##.
First of all, I would like to have an equation for the proper time.
I was using the Eddington-Finkelstein coordinates in the Schwarzschild metric : $$ds^2 = - (1-\frac{2M}{r}) dt^2 + 2dtdr +r^2 d\Omega^2$$
Knowing that the observer falls radially, thus ##d\phi = d\theta = 0##.
Also, ##ds^2 = -d\tau^2 ## and after a little algebra we get:
$$1 = (1-\frac{2M}{r}) (\frac{dt}{d\tau})^2 - 2 \frac{dt dr}{d\tau^2}$$
I'm pretty stuck here. I found here and there that the equation for the proper time in this situation should be ##\tau = \frac{\pi r_0^{3/2}}{2\sqrt{2M}}##.
I guess I need to find the value for ##\frac{dt}{d\tau}##.
Last edited: