Friction/heat kinetic energy - reactive force

Click For Summary

Discussion Overview

The discussion revolves around the relationship between friction, heat, and kinetic energy in the context of disc brakes on vehicles. Participants explore how the conversion of kinetic energy into heat affects the forces experienced by brake pads and the implications of these interactions on energy conservation and mechanical behavior.

Discussion Character

  • Debate/contested
  • Technical explanation
  • Conceptual clarification

Main Points Raised

  • One participant questions whether the heat generated by disc brakes reduces the reactive force experienced by the disks and if the absence of heat would increase the lateral force on the brake pads.
  • Another participant suggests that the kinetic energy of a squash ball, when it hits a wall and warms up, may affect the force with which it rebounds.
  • Some participants argue that energy and force are distinct concepts and cannot be directly decomposed into one another, challenging the idea of dividing kinetic energy into thermal and reactive components.
  • There is mention of "brake fade" as a real-world phenomenon that relates to the discussion of energy conversion in braking systems.
  • Participants discuss the implications of Newton's Third Law in the context of forces exerted during collisions, with some emphasizing the importance of the term "reactive force" while others argue it lacks physical significance.
  • One participant proposes that energy loss can be experimentally deduced by measuring the height to which a ball rebounds after being dropped, linking mechanical energy loss to kinetic energy changes.

Areas of Agreement / Disagreement

Participants express multiple competing views regarding the relationship between kinetic energy, heat, and force. There is no consensus on the significance of the term "reactive force" or how energy should be conceptualized in this context.

Contextual Notes

Participants highlight the complexity of linking energy and force, noting that while they are related, they are fundamentally different quantities. The discussion includes unresolved questions about definitions and the implications of energy conservation laws.

Who May Find This Useful

This discussion may be useful for individuals interested in the mechanics of braking systems, energy conversion processes, and the conceptual challenges in understanding the relationship between force and energy in physical systems.

TonyCross
Messages
66
Reaction score
12
Hi,
Could anyone please give me a little advice.
If we look at a disc brake on a vehicle, the disc brake pads apply a friction force on the disk rotor which causes the kinetic energy of the moving vehicle to be turned into heat.
Does this heat reduce the reactive force experienced on the disks? If there were no heat would there be an increase of lateral force on the brake pads?
My way of thinking is that the total kinetic energy of the vehicle must be divided into two components the creation of the heat, or the thermal component and the reactive lateral force experienced by the pads.
Thanks
Tony
 
Science news on Phys.org
TonyCross said:
My way of thinking is that the total kinetic energy of the vehicle must be divided into two components the creation of the heat, or the thermal component and the reactive lateral force experienced by the pads.
Sounds like you are confusing energy and force.
 
  • Like
Likes   Reactions: sophiecentaur
Maybe I am but let's consider a squash ball, the kinetic energy of the ball which then hits the wall with a force, it then warms is this warming reducing the force it rebounds from the wall?
 
The formula for potential energy depends on the force acting on two objects, so they are linked, my question simply asks if the thermal effect changes the energy, in my mind it must otherwise it would violate the conservation of energy law.
 
You are correct. A fraction of the mechanical energy in the form of kinetic energy is converted to heat, sound, etc. which means that when the ball rebounds, its mechanical energy will be reduced.
 
  • Like
Likes   Reactions: Lnewqban
kuruman said:
You are correct. A fraction of the mechanical energy in the form of kinetic energy is converted to heat, sound, etc. which means that when the ball rebounds, its mechanical energy will be reduced.
Thanks that is what I thought, do you know the formula to work out the loss in Kinetic energy, I know that the
units are joules, would you simply see how many joules were needed in the delta temp increase in the object then subtract this from the objects initial energy?
 
TonyCross said:
If we look at a disc brake on a vehicle, the disc brake pads apply a friction force on the disk rotor which causes the kinetic energy of the moving vehicle to be turned into heat.
Does this heat reduce the reactive force experienced on the disks? If there were no heat would there be an increase of lateral force on the brake pads?
My way of thinking is that the total kinetic energy of the vehicle must be divided into two components the creation of the heat, or the thermal component and the reactive lateral force experienced by the pads.
It all becomes heat. Think if it this way; if it didn't become heat, where would it go/what would it be??
 
TonyCross said:
Does this heat reduce the reactive force experienced on the disks?
What's a reactive force? How is it different than than a plain old force exerted on the disks? I just ask because you keep referring to it as a reactive force as if "reactive" has some special meaning.

If there were no heat would there be an increase of lateral force on the brake pads?
Increase compared to what?

TonyCross said:
The formula for potential energy depends on the force acting on two objects, so they are linked, my question simply asks if the thermal effect changes the energy, in my mind it must otherwise it would violate the conservation of energy law.
That's like saying the amount of cash you have on hand is related to the money you earned at your job, so finding a $20 bill on the ground affects your job.

There is a well-known problem called brake fade, so the answer to your original question is yes.
 
TonyCross said:
my question simply asks if the thermal effect changes the energy,
The problem was not with the heat energy, but with decomposing kinetic energy into heat energy and force. That makes no sense. You cannot add energy and force.
 
  • #10
vela said:
What's a reactive force? How is it different than than a plain old force exerted on the disks? I just ask because you keep referring to it as a reactive force as if "reactive" has some special meaning.Increase compared to what?That's like saying the amount of cash you have on hand is related to the money you earned at your job, so finding a $20 bill on the ground affects your job.

There is a well-known problem called brake fade, so the answer to your original question is yes.
Brake fade, yes of course that is a real world example of the effect. Reactive force is important as the object in motion applies a force to the object it collides with this is known as reactive force, my question relates directly to the reactive force.
 
  • #11
TonyCross said:
Thanks that is what I thought, do you know the formula to work out the loss in Kinetic energy, I know that the
units are joules, would you simply see how many joules were needed in the delta temp increase in the object then subtract this from the objects initial energy?
There is no formula per se because the energy loss depends on the material that makes up the ball (watch this very short video.) However, you can deduce the loss experimentally. Drop a ball from height ##h_i##, let it bounce off the floor and measure the ##h_f## to which the ball rebounds. The mechanical energy loss is ##mg(h_f-h_i)##.
 
  • Like
Likes   Reactions: Digcoal
  • #12
TonyCross said:
Reactive force is important as the object in motion applies a force to the object it collides with this is known as reactive force, my question relates directly to the reactive force.
A force is a force. The word "reactive" has no physical significance here.
 
  • #13
A.T. said:
The problem was not with the heat energy, but with decomposing kinetic energy into heat energy and force. That makes no sense. You cannot add energy and force.
Sorry I don't understand of course energy Ke and Force (Newtons) are different however they are most definitely linked reduce the Ke and the Force will be reduced increase the Force applied and the Ke will increase/
 
  • #14
A.T. said:
A force is a force. The word "reactive" has no physical significance here.
So if my ball hits a tin can and the tin can falls over what is this force called? Newtons 3rd every action has an equal and opposite REACTION.
 
  • #15
kuruman said:
You are correct. A fraction of the mechanical energy in the form of kinetic energy is converted to heat, sound, etc. which means that when the ball rebounds, its mechanical energy will be reduced.
Thanks
 
  • #16
TonyCross said:
Newtons 3rd every action has an equal and opposite REACTION.
Newtons 3rd Law just says that forces come in equal but opposite pairs. The naming is irrelevant.
 
  • #17
A.T. said:
Newtons 3rd Law just says that forces come in equal but opposite pairs. The naming is irrelevant.
Yes in the case of my example a brake disk and a rotor (a pair) each acts in opposition so reactive force is
important as this is the force seen by the disk.
 
  • #18
The one that makes the can fall over? It's the force exerted on the can by the ball. There's also a force that the can exerts on the ball, which slows the ball down. The two form an action-reaction pair, but which one is called the action and which one is called the reaction is arbitrary.

Here, you're only talking about the force exerted by the pads on the disk. You're not concerned about the force the disk exerts on the pad, so referring to a reactive force is pointless.
 
  • Like
Likes   Reactions: Digcoal and nasu
  • #19
TonyCross said:
... they are most definitely linked ...
Everything is linked somehow. That doesn't mean that some energy can be divided into two components, one of which is a force.
 
  • #20
TonyCross said:
...reactive force is important ...
But calling it "reactive" is not.
 
  • #21
A.T. said:
But calling it "reactive" is not.
what should I call it if not a reactive force
 
  • #22
TonyCross said:
what should I call it if not a reactive force
force by ... on ...
 
  • #23
Take a hammer and nail, I move the hammer at a constant speed with a certain mass this is kinetic energy or potential energy, it hits the nail with a Force (Newtons) the action of the nail has to be the reactive force causing
the nail to move into the wood with the transferred kinetic energy, or am I wrong.
 
  • #24
vela said:
The one that makes the can fall over? It's the force exerted on the can by the ball. There's also a force that the can exerts on the ball, which slows the ball down. The two form an action-reaction pair, but which one is called the action and which one is called the reaction is arbitrary.

Here, you're only talking about the force exerted by the pads on the disk. You're not concerned about the force the disk exerts on the pad, so referring to a reactive force is pointless.
The friction between the pad and the rotor causes the pad to try and move forward, if I place a strain gauge on
the pad I will see a force trying to move the pad forward, the caliper stops this happening, this is not the same as the rotating rotor, this must be classed as a reactive force acting on the pad.
 
  • #25
The problem is that you have a vague understanding of forces, energy, work, etc., and you're trying to draw a specific conclusion based on just suggestive connections. Until your knowledge of basic physics improves, it's highly unlikely you'll be able to reason correctly and reach a valid conclusion.
 
  • #26
vela said:
The problem is that you have a vague understanding of forces, energy, work, etc., and you're trying to draw a specific conclusion based on just suggestive connections. Until your knowledge of basic physics improves, it's highly unlikely you'll be able to reason correctly and reach a valid conclusion.
Thanks for your condescending reply. I was not looking for insults I simply had what I thought was a valid question.
 
  • #27
TonyCross said:
Take a hammer and nail, I move the hammer at a constant speed with a certain mass this is kinetic energy or potential energy, it hits the nail with a Force (Newtons) the action of the nail has to be the reactive force causing
the nail to move into the wood with the transferred kinetic energy, or am I wrong.
You can call it that, but it isn't necessary to do so. In any case, I think this is a digression and not helping answer your original question.

The hammer applies a force (variable) over a distance to a nail, doing work/transferring energy to it. Where does that energy reside/what form is it in after that?
 
  • #28
russ_watters said:
You can call it that, but it isn't necessary to do so. In any case, I think this is a digression and not helping answer your original question.

The hammer applies a force (variable) over a distance to a nail, doing work/transferring energy to it. Where does that energy reside/what form is it in after that?
The energy is work done (nail in the wood) and heat caused by the friction between the wood and the nail.
 
  • #29
TonyCross said:
Does this heat reduce the reactive force experienced on the disks? If there were no heat would there be an increase of lateral force on the brake pads?
No, heat does not reduce force in general.

There was a mention of brake fade, but that is not heat reducing force that is heat altering the material properties in an undesirable way. In other words, brake fade is due to a specific technology not a general physical principle.

In particular, it seems like you are thinking that the “action” force will be larger than the “reaction” force because heat will reduce the “reaction” force. This is incorrect. The “action” and “reaction” forces are equal and opposite.
 
  • #30
TonyCross said:
The energy is work done (nail in the wood) and heat caused by the friction between the wood and the nail.
No, "work done on the nail" is the process, not the result. It is being done only while the nail is in motion. Once finished, then what?
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 2 ·
Replies
2
Views
7K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 77 ·
3
Replies
77
Views
6K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
1
Views
1K
  • · Replies 30 ·
2
Replies
30
Views
3K