Friction on an Inclined Plane: Solving for Acceleration and Forces

Click For Summary
SUMMARY

The discussion centers on analyzing the forces acting on a 2 kg block on a 30° incline with a coefficient of static friction (μ) of 0.8. The key equations used include the normal force (F_N = mg cos θ), friction force (F_F = μ mg cos θ), and gravitational components (Fg_x = mg sin θ, Fg_y = mg cos θ). The conclusion reached is that the block will not slide downhill unless the net force in that direction exceeds the maximum static friction force of 13.8 N, which is greater than the gravitational component of 10 N acting downhill.

PREREQUISITES
  • Understanding of Newton's laws of motion
  • Familiarity with static and kinetic friction concepts
  • Knowledge of trigonometric functions in physics
  • Ability to apply free body diagrams for force analysis
NEXT STEPS
  • Study the differences between static and kinetic friction coefficients
  • Learn how to derive and apply free body diagrams in inclined plane problems
  • Explore the implications of angle of inclination on frictional forces
  • Investigate the effects of varying mass and friction coefficients on acceleration
USEFUL FOR

Students studying physics, particularly those focusing on mechanics, as well as educators seeking to clarify concepts related to forces on inclined planes.

Cooojan

Homework Statement



There is a mass on incline surface that is acted by foces.

20171024_195755.jpg


μ=0.8
m=2 kg
θ=30°
g=10 m/s^2

##F_N##= normal force
##F_F##= friction force
##Fg_x## = horizontal gravitational component
##Fg_y## = vertical gravitational component

Homework Equations



##F_N=mg~cosθ##
##F_F=μmg~cosθ##
##Fg_x=mg~sinθ##
##Fg_y=mg~cosθ##

The Attempt at a Solution



##∑F_y=F_N-Fg_y=mg~cosθ-mg~cosθ=0##
##∑F_x=Fg_x-F_F=mg~sinθ-μmg~cosθ=mg(sinθ-μ~cosθ)=20(\frac12 -0.8 \frac{√3}{2})=20(-0.193)=-3.86~N##

##a= \frac Fm = -1.93~m/s^2##

This makes absolutely no sense to me.
How can the block have the upward acceleration on the incline... And how can the Friction force be bigger the ##Fg_x##?
 

Attachments

  • 20171024_195755.jpg
    20171024_195755.jpg
    31.1 KB · Views: 741
Last edited by a moderator:
Physics news on Phys.org
Cooojan said:
how can the Friction force be bigger the ##Fg_x##?
It can't be, of course.
Can you correctly quote the equation relating normal force, frictional force and coefficient of static friction?
 
Cooojan said:
How can the block have the upward acceleration on the incline
If the block is sliding downhill friction will oppose the motion and be uphill. What is the full statement of the problem? Is the block sliding uphill or downhill? There is nothing wrong about the frictional force being larger than mg sinθ. Think about it.
 
kuruman said:
If the block is sliding downhill friction will oppose the motion and be uphill. What is the full statement of the problem? Is the block sliding uphill or downhill? There is nothing wrong about the frictional force being larger than mg sinθ. Think about it.

My point is, when we put the 2 kg block on the incline, it can't just start sliding up due to the gravity...
 
Cooojan said:
My point is, when we put the 2 kg block on the incline, it can't just start sliding up due to the gravity...
I agree. That is why we need the full description of the problem. The block could doing any number of things, it could be (a) at rest or moving at constant velocity; (b) sliding downhill and speeding up; (c) sliding downhill and slowing down; (d) sliding uphill and slowing down. Your description
Cooojan said:
There is a mass on incline surface that is acted by foces.
is not helpful to determine which of the above possibilities is the case.
 
kuruman said:
I agree. That is why we need the full description of the problem. The block could doing any number of things, it could be (a) at rest or moving at constant velocity; (b) sliding downhill and speeding up; (c) sliding downhill and slowing down; (d) sliding uphill and slowing down. Your description

is not helpful to determine which of the above possibilities is the case.

Actually the exercise is totaly different. I just invented this problem to help me understand, how would the block behave with the following values. But let's say the block is initially at rest
 
Last edited by a moderator:
haruspex said:
It can't be, of course.
Can you correctly quote the equation relating normal force, frictional force and coefficient of static friction?

##F_F= μ~F_N##
##F_N = mg~cosθ~~~~~~⇒~~~~~~F_F=μ~mg~cosθ##
 
Cooojan said:
Actually the exercise is totally different. I just invented this problem to help me understand, how would the block behave with the ollowing values. But let's say the block is initially at rest
OK. So you picked some values and you want to know what will happen if you place the block on the incline. You should understand that the coefficient of kinetic friction is relevant only if the block is sliding. If that's the case, then the force of kinetic friction is fk = μkFN. If you want to know whether the block will start sliding downhill when you place it on the incline, then you need to compare the downhill component of the weight with the maximum force of static friction that the surface can exert. This is fsmax = μs FN where μs is the coefficient of static friction.

Here you found that the downward component of the weight is mg sinθ = 2 kg×10 m/s2×½ = 10 N
Assuming that μs = 0.8, fsmax = 0.8×2 kg×10 m/s2×0.866 = 13.8 N
Since the surface can exert as much as 13.8 N uphill but only 10 N are needed to keep the block in place, the block stays in place. Note that the force of friction here is not larger than the downhill component of the weight. The uphill force of friction is just what is needed to have zero acceleration, namely 10 N.
 
  • Like
Likes   Reactions: Cooojan
Cooojan said:
##F_F= μ~F_N##
Wrong.
If you stand still on a level surface, is there a horizontal frictional force on your feet from the floor?
 
  • Like
Likes   Reactions: Cooojan
  • #10
kuruman said:
OK. So you picked some values and you want to know what will happen if you place the block on the incline. You should understand that the coefficient of kinetic friction is relevant only if the block is sliding. If that's the case, then the force of kinetic friction is fk = μkFN. If you want to know whether the block will start sliding downhill when you place it on the incline, then you need to compare the downhill component of the weight with the maximum force of static friction that the surface can exert. This is fsmax = μs FN where μs is the coefficient of static friction.

Here you found that the downward component of the weight is mg sinθ = 2 kg×10 m/s2×½ = 10 N
Assuming that μs = 0.8, fsmax = 0.8×2 kg×10 m/s2×0.866 = 13.8 N
Since the surface can exert as much as 13.8 N uphill but only 10 N are needed to keep the block in place, the block stays in place. Note that the force of friction here is not larger than the downhill component of the weight. The uphill force of friction is just what is needed to have zero acceleration, namely 10 N.
OK! I think I get it. So the block won't be sliding downhill, unless summary force in the downhill direction would be larger that 13,8N...
 
  • #11
haruspex said:
Wrong.
If you stand still on a level surface, is there a horizontal frictional force on your feet from the floor?

##F_{Fs} ≤μ_sF_N##

I see
 
  • #12
Thank you guys. Realy helped me out there!
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 21 ·
Replies
21
Views
1K
Replies
11
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
5K