(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

{Q 6.2.2 from Arfken "Mathematical Methods for Physicists"}

Having shown that the real part [tex]u(x,y)[/tex] and imaginary part [tex]v(x,y)[/tex] of an analytic function [tex]w(z)[/tex] each satisfy Laplace's equation, show that [tex]u(x,y)[/tex] and [tex]v(x,y)[/tex]cannot have either a maximum or a minimumin the interior of any region in which [tex]w(z)[/tex] is analytic. (They can have saddle points)

2. Relevant equations

Cauchy-Riemann (CR) relations for analyticity of the function [tex]u_x=v_y[/tex] and [tex]u_y=-v_x[/tex] where subscript stands for partial differentiation with respect to that variable.

[tex]\nabla^2u=0[/tex] and [tex]\nabla^2v=0[/tex] (it follows from CR relations and proves that analytic function satisfies Laplace's equation)

3. The attempt at a solution

The local minimum/maximum points are to satisfy [tex]u_x=0[/tex] and [tex]u_y=0[/tex]

and

[tex]M=u_{xx}u_{yy}-(u_{xy})^2>0[/tex]

[tex]\nabla^2u=u_{xx}+u_{yy}=0\therefore u_{xx}=-u_{yy}[/tex]

[tex]M=-u_{yy}^2-u_{xy}^2\leq0[/tex]

...and it looks like totally wrong direction...

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Functions of Complex Variables

**Physics Forums | Science Articles, Homework Help, Discussion**