MHB Galois Groups .... A&W Theorem 47.1 .... ....

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Groups Theorem
Click For Summary
The discussion centers on understanding Theorem 47.1 from Anderson and Feil's "A First Course in Abstract Algebra," specifically the relationship between the irreducibility of a polynomial \( f \) and the degree of the field extension \( |F(\alpha) : F| \). It is explained that the minimum polynomial \( m_\alpha \) of \( \alpha \) is the unique monic irreducible polynomial with \( \alpha \) as a root. Since \( f \) is irreducible and has \( \alpha \) as a root, it is a constant multiple of \( m_\alpha \), leading to the conclusion that the degree of \( f \) equals the degree of \( m_\alpha \). Thus, the irreducibility of \( f \) implies that \( \text{deg}(f) = |F(\alpha) : F| \). This clarification helps solidify the connection between polynomial properties and field extensions in Galois theory.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Anderson and Feil - A First Course in Abstract Algebra.

I am currently focused on Ch. 47: Galois Groups... ...

I need some help with an aspect of the proof of Theorem 47.1 ...

Theorem 47.1 and its proof read as follows:
View attachment 6863
View attachment 6864
At the end of the above proof by Anderson and Feil, we read the following:

"... ... It then follows that $$| \text{Gal} ( F( \alpha ) | F ) | \le \text{deg}(f)$$.

The irreducibility of $$f$$ implies that $$\text{deg}(f) = | F( \alpha ) : F |$$ ... ... "
Can someone please explain exactly why the irreducibility of $$f$$ implies that $$\text{deg}(f) = | F( \alpha ) : F$$ | ... ... ?Peter
 
Physics news on Phys.org
Hi Peter,

Recall that the minimum polynomial $m_\alpha$ of $\alpha$ is the unique monic irreducible polynomial having $\alpha$ as a root. Since $f$ is irreducible and $f(\alpha) = 0$, $f$ is a constant multiple of $m_\alpha$. Therefore, $\text{deg}(f) = \text{deg}(m_\alpha) = |F(\alpha) : F|$.
 
Euge said:
Hi Peter,

Recall that the minimum polynomial $m_\alpha$ of $\alpha$ is the unique monic irreducible polynomial having $\alpha$ as a root. Since $f$ is irreducible and $f(\alpha) = 0$, $f$ is a constant multiple of $m_\alpha$. Therefore, $\text{deg}(f) = \text{deg}(m_\alpha) = |F(\alpha) : F|$.
Thanks for the help, Euge,

Peter
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
8
Views
2K