MHB Galois Groups .... A&W Theorem 47.1 .... ....

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Groups Theorem
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Anderson and Feil - A First Course in Abstract Algebra.

I am currently focused on Ch. 47: Galois Groups... ...

I need some help with an aspect of the proof of Theorem 47.1 ...

Theorem 47.1 and its proof read as follows:
View attachment 6863
View attachment 6864
At the end of the above proof by Anderson and Feil, we read the following:

"... ... It then follows that $$| \text{Gal} ( F( \alpha ) | F ) | \le \text{deg}(f)$$.

The irreducibility of $$f$$ implies that $$\text{deg}(f) = | F( \alpha ) : F |$$ ... ... "
Can someone please explain exactly why the irreducibility of $$f$$ implies that $$\text{deg}(f) = | F( \alpha ) : F$$ | ... ... ?Peter
 
Physics news on Phys.org
Hi Peter,

Recall that the minimum polynomial $m_\alpha$ of $\alpha$ is the unique monic irreducible polynomial having $\alpha$ as a root. Since $f$ is irreducible and $f(\alpha) = 0$, $f$ is a constant multiple of $m_\alpha$. Therefore, $\text{deg}(f) = \text{deg}(m_\alpha) = |F(\alpha) : F|$.
 
Euge said:
Hi Peter,

Recall that the minimum polynomial $m_\alpha$ of $\alpha$ is the unique monic irreducible polynomial having $\alpha$ as a root. Since $f$ is irreducible and $f(\alpha) = 0$, $f$ is a constant multiple of $m_\alpha$. Therefore, $\text{deg}(f) = \text{deg}(m_\alpha) = |F(\alpha) : F|$.
Thanks for the help, Euge,

Peter
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...

Similar threads

Back
Top