MHB Galois Theory - Fixed Subfield of K by H ....

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Theory
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading "Abstract Algebra: Structures and Applications" by Stephen Lovett ...

I am currently focused on Chapter 8: Galois Theory, Section 1: Automorphisms of Field Extensions ... ...

I need help with Proposition 11.1.11 on page 560 ... ...Proposition 11.1.11 reads as follows:
https://www.physicsforums.com/attachments/6664
In the above Proposition from Lovett we read the following:" ... ... Since $$\sigma$$ is a homomorphism $$U(F) \ \rightarrow \ U(F)$$ ... ... "My question is ... ... what is $$F$$ ... is it a typo ... does it mean $$K$$ ...Hoping someone can help ... ...

PeterNOTE: U(F) in Lovett means the group of units of the ring F ...
 
Physics news on Phys.org
You are correct, $F$ should be $K$.
 
Euge said:
You are correct, $F$ should be $K$.
Thanks Euge ...

Peter
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top