- #1
- 5
- 0
Find the electric field for a non-conducting sphere of radius R = 1 meter that is surrounded by air in the region r > 1. The interior of the sphere has a charge density of ρ(r) = r.
The answer is k(pi)/r^2, but I can't seem to get that. My problem is with finding the enclosed charge. I've tried getting the answer many ways, but I keep getting it wrong. Generally, I know you have to set up an integral of the from ∫ρ(r)4(pi)r^2 dr to get the enclosed charge and then plug it into E(r) = kQ/r^2, but something keeps going wrong somewhere. I would greatly appreciate any help/advice anyone could offer. Thanks.
The answer is k(pi)/r^2, but I can't seem to get that. My problem is with finding the enclosed charge. I've tried getting the answer many ways, but I keep getting it wrong. Generally, I know you have to set up an integral of the from ∫ρ(r)4(pi)r^2 dr to get the enclosed charge and then plug it into E(r) = kQ/r^2, but something keeps going wrong somewhere. I would greatly appreciate any help/advice anyone could offer. Thanks.