- #1
dliu1004
- 2
- 0
Summary:: I understand the basics of Gauss's Law and how to solve some of the simpler problems, but I cannot seem to solve these two questions.
For question 007, one of my friends told me I had to ignore the outer shell? I did that: I integrated rho dV: (6.02*r*pi*r^2*h) from r=0 to r=.0462 and set that equal to epsilon(naught)*E*2pi*0.188*h (this is: epsilon(naught) * the closed integral of E dA) and solved for E. Yet, this was incorrect.
For question 008, I calculated the total enclosed charge per unit height of the inner cylinder per meter by integrating rho dV from r=0 to r=.0462. I got something like q(enc)=0.00002154*h, so that means the charge of the inner surface of the hollow cylinder must be -0.00002154*h, right? I then divided that by the surface area of the inner surface, which was 2*pi*.117*h to get charge per unit area, yet, this was also incorrect.
Thanks in advance!
For question 007, one of my friends told me I had to ignore the outer shell? I did that: I integrated rho dV: (6.02*r*pi*r^2*h) from r=0 to r=.0462 and set that equal to epsilon(naught)*E*2pi*0.188*h (this is: epsilon(naught) * the closed integral of E dA) and solved for E. Yet, this was incorrect.
For question 008, I calculated the total enclosed charge per unit height of the inner cylinder per meter by integrating rho dV from r=0 to r=.0462. I got something like q(enc)=0.00002154*h, so that means the charge of the inner surface of the hollow cylinder must be -0.00002154*h, right? I then divided that by the surface area of the inner surface, which was 2*pi*.117*h to get charge per unit area, yet, this was also incorrect.
Thanks in advance!