General relativity- Coordinate/metric transformations

Click For Summary
The discussion focuses on finding a coordinate system (t,x) such that the metric ds²=(u²-v²)(du²-dv²) can be transformed into the form ds²=dt²-dx². Participants explore the use of general coordinate transformations, specifically the relationship between the old and new metrics through derivatives. Two partial differential equations were derived from the transformation, but their complexity raised concerns about solving them. A suggestion was made to consider the inverse transformation for potentially easier equations. The conversation emphasizes the importance of mastering LaTeX for clear communication of mathematical expressions.
jgarrel
Messages
2
Reaction score
0

Homework Statement


Consider the metric ds2=(u2-v2)(du2 -dv2). I have to find a coordinate system (t,x), such that ds2=dt2-dx2. The same for the metric: ds2=dv2-v2du2.

Homework Equations


General coordinate transformation, ds2=gabdxadxb

The Attempt at a Solution


I started with a general transformation xa→x'a so the new metric is g'μν=gab(dxa/dx'μ)(dxb/dx'ν). The components of g (old metric) and g'(new metric) are known and the unknowns are the derivatives of the old coordinates with respect to the new ones. That's where I'm stuck.
 
Physics news on Phys.org
jgarrel said:
I started with a general transformation xa→x'a so the new metric is g'μν=gab(dxa/dx'μ)(dxb/dx'ν).
Those derivatives should be partial derivatives. Write it in latex like this: $$g'_{\mu\nu} ~=~ g_{ab}\, \frac{\partial x^a}{\partial x'^\mu} \, \frac{\partial x^b}{\partial x'^\nu} ~.$$ (Look under the Info->Help/How-To menu to find a Latex primer. You'll need to master at least basic latex on this forum.)

Both metrics are diagonal, which makes it reasonably easy to write out the above transformation equations more explicitly.

I.e., write it out explicitly (where ##\mu,\nu## are ##t,x## and ##a,b## are ##u,v##). You should get 2 partial-differential equations where each right hand side has 2 terms. I'll wait to see if you can get that far before giving more hints.
 
Thanks for the reply!
I already had ended up with these two differential equations, but I thought there was another way, because they seem difficult to solve. I put them here:

##1=(u^2-v^2) \frac {\partial^2 u} {\partial t^2} -(u^2-v^2) \frac {\partial^2 v} {\partial t^2}##

##-1=(u^2-v^2) \frac {\partial^2 u} {\partial x^2} -(u^2-v^2) \frac {\partial^2 v} {\partial x^2}##
 
Try writing out the corresponding PDEs for the inverse transformation first. I.e., treating ##t,x## as functions of ##u,v##. They turn out a bit easier.

Btw, if those partial derivatives become too tedious to keep writing out fully in latex, you can always use the briefer "comma" notation, e.g., $$ \frac{\partial u}{\partial t} ~\equiv~ u,_t ~~;~~~~ \mbox{and}~~~~~~ \frac{\partial^2 u}{\partial t^2} ~\equiv~ u,_{tt} ~~;~~~~ \mbox{(etc)}.$$
 
  • Like
Likes jgarrel

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 37 ·
2
Replies
37
Views
6K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K