MHB Generating function of bessel function

Click For Summary
The discussion centers on proving the generating function for Bessel functions, specifically the equation e^{\frac{x}{2}(z-z^{-1})} = \sum_{n=-\infty}^{\infty} J_n(x) z^n. Participants explore various mathematical approaches and techniques to establish the validity of this equation. Key points include the significance of Bessel functions in mathematical physics and their applications in solving differential equations. The conversation emphasizes the importance of understanding the properties of generating functions in relation to Bessel functions. Overall, the thread aims to clarify and validate this fundamental mathematical relationship.
alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Prove the generating function

$$e^{\frac{x}{2}\left(z-z^{-1}\right)}=\sum_{n=-\infty}^{\infty}J_n(x)z^n$$​
 
Mathematics news on Phys.org
$\displaystyle e^{\frac{x}{2}\ (z - z^{-1})} = \sum_{m=0}^{\infty} \frac{(\frac{x}{2})^{m}}{m!}\ z^{m} \ \sum_{k=0}^{\infty} (-1)^{k} \ \frac{(\frac{x}{2})^{k}}{k!}\ z^{k} = $

$\displaystyle = \sum_{n = - \infty}^{+ \infty} \{ \sum_{m - k = n} \frac{(-1)^{k}\ (\frac{x}{2})^{m + k}}{m!\ k!}\ \}\ z^{n} = \sum_{n = - \infty}^{+ \infty} \sum_{k=0}^{\infty}^{n} \{ \frac{(-1)^{k}}{(n+k)!\ k!}\ (\frac{x}{2})^ {2 k + n} \} z^{n} = \sum_{n = - \infty}^{+ \infty} J_{n} (x)\ z^{n}$

Kind regards

$\chi$ $\sigma$
 
$$2(n+1)\jmath_{n+1}(x) = x \jmath_{n+2}(x) + x \jmath_n(x)$$

Multiplying by $z^n$ and summing from $-\infty$ to $\infty$ both sides gives

$$\begin{aligned} \sum_{n = -\infty}^{\infty} 2n \jmath_{n}(x) z^{n-1} &= \sum_{n = -\infty}^{\infty} x \jmath_n(x) z^{n-2} + \sum_{n = -\infty}^{\infty} x \jmath_{n}(x) z^n \\ &= \sum_{n = -\infty}^{\infty} x \left (1 + \frac{1}{z^2} \right ) \jmath_n(x) z^n \end{aligned}$$

Hence, we have the differential equation :

$$ K'(z) = \frac{x}{2} \left (1 + \frac{1}{z^2} \right ) K(z) $$

where $K(z) = \sum_{n = -\infty}^{\infty} \jmath_n(x) z^n$. This results $K(z) = \bar{C} \exp \left (\frac{x}{2} \left ( z - \frac{1}{z} \right) \right )$ after resolving the ODE. Substituting $z = 1$ easily gives $\bar{C} = 1$. Thus, we have

$$\sum_{n = -\infty}^{\infty} \jmath_n(x) z^n = \exp \left (\frac{x}{2} \left ( z - \frac{1}{z} \right) \right ) \;\;\; \blacksquare$$

Balarka
.
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K