Generating function of bessel function

Click For Summary
SUMMARY

The generating function for Bessel functions is established as \( e^{\frac{x}{2}(z - z^{-1})} = \sum_{n=-\infty}^{\infty} J_n(x) z^n \). This formula connects the exponential function with Bessel functions, providing a powerful tool for solving problems in mathematical physics and engineering. The discussion emphasizes the importance of this generating function in various applications, particularly in wave propagation and heat conduction.

PREREQUISITES
  • Understanding of Bessel functions, specifically \( J_n(x) \)
  • Familiarity with exponential functions and their properties
  • Basic knowledge of series expansions and summation techniques
  • Concept of complex variables and their applications in generating functions
NEXT STEPS
  • Study the properties and applications of Bessel functions in mathematical physics
  • Explore the derivation of generating functions for other special functions
  • Investigate the role of Bessel functions in solving differential equations
  • Learn about the applications of generating functions in combinatorial mathematics
USEFUL FOR

Mathematicians, physicists, and engineers interested in special functions, particularly those working with wave equations and heat transfer problems.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Prove the generating function

$$e^{\frac{x}{2}\left(z-z^{-1}\right)}=\sum_{n=-\infty}^{\infty}J_n(x)z^n$$​
 
Mathematics news on Phys.org
$\displaystyle e^{\frac{x}{2}\ (z - z^{-1})} = \sum_{m=0}^{\infty} \frac{(\frac{x}{2})^{m}}{m!}\ z^{m} \ \sum_{k=0}^{\infty} (-1)^{k} \ \frac{(\frac{x}{2})^{k}}{k!}\ z^{k} = $

$\displaystyle = \sum_{n = - \infty}^{+ \infty} \{ \sum_{m - k = n} \frac{(-1)^{k}\ (\frac{x}{2})^{m + k}}{m!\ k!}\ \}\ z^{n} = \sum_{n = - \infty}^{+ \infty} \sum_{k=0}^{\infty}^{n} \{ \frac{(-1)^{k}}{(n+k)!\ k!}\ (\frac{x}{2})^ {2 k + n} \} z^{n} = \sum_{n = - \infty}^{+ \infty} J_{n} (x)\ z^{n}$

Kind regards

$\chi$ $\sigma$
 
$$2(n+1)\jmath_{n+1}(x) = x \jmath_{n+2}(x) + x \jmath_n(x)$$

Multiplying by $z^n$ and summing from $-\infty$ to $\infty$ both sides gives

$$\begin{aligned} \sum_{n = -\infty}^{\infty} 2n \jmath_{n}(x) z^{n-1} &= \sum_{n = -\infty}^{\infty} x \jmath_n(x) z^{n-2} + \sum_{n = -\infty}^{\infty} x \jmath_{n}(x) z^n \\ &= \sum_{n = -\infty}^{\infty} x \left (1 + \frac{1}{z^2} \right ) \jmath_n(x) z^n \end{aligned}$$

Hence, we have the differential equation :

$$ K'(z) = \frac{x}{2} \left (1 + \frac{1}{z^2} \right ) K(z) $$

where $K(z) = \sum_{n = -\infty}^{\infty} \jmath_n(x) z^n$. This results $K(z) = \bar{C} \exp \left (\frac{x}{2} \left ( z - \frac{1}{z} \right) \right )$ after resolving the ODE. Substituting $z = 1$ easily gives $\bar{C} = 1$. Thus, we have

$$\sum_{n = -\infty}^{\infty} \jmath_n(x) z^n = \exp \left (\frac{x}{2} \left ( z - \frac{1}{z} \right) \right ) \;\;\; \blacksquare$$

Balarka
.
 
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K