MHB Generating function of bessel function

Click For Summary
The discussion centers on proving the generating function for Bessel functions, specifically the equation e^{\frac{x}{2}(z-z^{-1})} = \sum_{n=-\infty}^{\infty} J_n(x) z^n. Participants explore various mathematical approaches and techniques to establish the validity of this equation. Key points include the significance of Bessel functions in mathematical physics and their applications in solving differential equations. The conversation emphasizes the importance of understanding the properties of generating functions in relation to Bessel functions. Overall, the thread aims to clarify and validate this fundamental mathematical relationship.
alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
Prove the generating function

$$e^{\frac{x}{2}\left(z-z^{-1}\right)}=\sum_{n=-\infty}^{\infty}J_n(x)z^n$$​
 
Mathematics news on Phys.org
$\displaystyle e^{\frac{x}{2}\ (z - z^{-1})} = \sum_{m=0}^{\infty} \frac{(\frac{x}{2})^{m}}{m!}\ z^{m} \ \sum_{k=0}^{\infty} (-1)^{k} \ \frac{(\frac{x}{2})^{k}}{k!}\ z^{k} = $

$\displaystyle = \sum_{n = - \infty}^{+ \infty} \{ \sum_{m - k = n} \frac{(-1)^{k}\ (\frac{x}{2})^{m + k}}{m!\ k!}\ \}\ z^{n} = \sum_{n = - \infty}^{+ \infty} \sum_{k=0}^{\infty}^{n} \{ \frac{(-1)^{k}}{(n+k)!\ k!}\ (\frac{x}{2})^ {2 k + n} \} z^{n} = \sum_{n = - \infty}^{+ \infty} J_{n} (x)\ z^{n}$

Kind regards

$\chi$ $\sigma$
 
$$2(n+1)\jmath_{n+1}(x) = x \jmath_{n+2}(x) + x \jmath_n(x)$$

Multiplying by $z^n$ and summing from $-\infty$ to $\infty$ both sides gives

$$\begin{aligned} \sum_{n = -\infty}^{\infty} 2n \jmath_{n}(x) z^{n-1} &= \sum_{n = -\infty}^{\infty} x \jmath_n(x) z^{n-2} + \sum_{n = -\infty}^{\infty} x \jmath_{n}(x) z^n \\ &= \sum_{n = -\infty}^{\infty} x \left (1 + \frac{1}{z^2} \right ) \jmath_n(x) z^n \end{aligned}$$

Hence, we have the differential equation :

$$ K'(z) = \frac{x}{2} \left (1 + \frac{1}{z^2} \right ) K(z) $$

where $K(z) = \sum_{n = -\infty}^{\infty} \jmath_n(x) z^n$. This results $K(z) = \bar{C} \exp \left (\frac{x}{2} \left ( z - \frac{1}{z} \right) \right )$ after resolving the ODE. Substituting $z = 1$ easily gives $\bar{C} = 1$. Thus, we have

$$\sum_{n = -\infty}^{\infty} \jmath_n(x) z^n = \exp \left (\frac{x}{2} \left ( z - \frac{1}{z} \right) \right ) \;\;\; \blacksquare$$

Balarka
.
 
Last edited:
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K