Geometic Series that sums to circle?

AI Thread Summary
The discussion centers on the possibility of dividing the area of a circle using similar polygons with a common ratio. A participant explores inscribing a square and creating an infinite series of triangles, noting that these triangles do not maintain a common ratio. They propose that if the area of the unit disk could be expressed as a limit of a geometric series, it would imply that either the area of the largest sub-figure or the common ratio must be irrational, which complicates the process. Another participant argues that using irrational numbers like the square root of two is feasible, but acknowledges that constructing such numbers can be more challenging than using simple rational ratios. The conversation highlights the complexities involved in representing the area of a circle through geometric series.
111111
Messages
29
Reaction score
0
Does anyone know if there is a way to divide up the area of a circle using similar polygons, with a common ratio? I was just curious if there is a way, or if it has been proven impossible.

For example, I tried inscribing a square inside a circle and making an infinite series of triangles with the remaining area, but the triangles do not have a common ratio.
 
Mathematics news on Phys.org
IF we can write the area of the unit disk as the limit of a geometric series, then, with a0 being the area of the largest sub-figure, and k the constant ratio, then we would necessarily have the following equation:

\frac{a_{0}}{1-k}=\pi

But, since the ratio between rational numbers itself must be rational, it follows that either a0, k, or both must be irrational numbers.

And that sort of deflates the attractiveness of the procedure, don't you agree?
 
This probably doesn't make a difference but the area of circle is equal to pi*r^2 where r is the radius of the circle.

But I don't know why that would deflate the attractiveness of the procedure. Why couldn't the ratio be the sqrt(2) or something?
 
I was talking about the "unit disk", with radius equal to 1.

Well, sure it could be 1/square root of two or whatever else, but to construct some nasty irrational number is generally more difficult than a simple rational ratio.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top