Recently I discovered geometric algebra which looks very exciting. I was wondering if there is any connection between geometric algebra and differential forms?(adsbygoogle = window.adsbygoogle || []).push({});

I see that different research groups recommend the use of differential forms (http://www.ee.byu.edu/forms/forms-home.html" [Broken]), and claims that these are much more intuitive and have other advantages over the usual vector calculus (of Gibbs).

Do you have good examples of where differential forms and geometric algebra (respectively) will be useful and why? (I mean not only for expressing thing elegantly for example maxwell's equations, but useful in terms of concrete calculations too).

It would be nice to hear about other examples than the usual ones of high energy physics, for example classical physics (fluid mechanics, electromagnetism) and condensed matter physics.

I am currently taking a fantastic course on abstract differential geometry (and we will cover differential forms soon) but i am wondering if geometric algebra are worth studying.

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Geometric algebra vs. differential forms

Loading...

Similar Threads - Geometric algebra differential | Date |
---|---|

B What is the name of this triangular geometric shape? | Feb 20, 2018 |

I Is this a compound angle? What's the geometric meaning? | Dec 31, 2017 |

Algebraic intuition vs geometric intuition | Oct 6, 2011 |

How to satisfy this identity (conformal model in geometric algebra) | Sep 9, 2011 |

Geometric Topology Vs. Algebraic Topology. | Oct 28, 2006 |

**Physics Forums - The Fusion of Science and Community**