Geometry: prove that point M is touched by 4 circles

Click For Summary
SUMMARY

The discussion focuses on proving that a point M is touched by four circles using Cartesian coordinates. The equations of the circles are represented as x² + y² + lx + my + n = 0, leading to a system of four equations that reveals a degenerate solution. The proof involves calculating determinants of matrices derived from the circle equations, specifically a 3x3 matrix that must have a determinant of zero to ensure a solution exists. The participants emphasize the importance of symmetry in simplifying the calculations.

PREREQUISITES
  • Understanding of Cartesian coordinates and their applications in geometry.
  • Familiarity with circle equations in the form x² + y² + lx + my + n = 0.
  • Knowledge of matrix operations, particularly determinants and their significance in linear algebra.
  • Experience with solving systems of equations, especially in the context of geometric proofs.
NEXT STEPS
  • Study the properties of determinants and their applications in geometry.
  • Learn about the circumcircle and its mathematical implications in triangle geometry.
  • Explore advanced matrix theory, focusing on eigenvalues and eigenvectors.
  • Investigate the concept of degenerate solutions in systems of equations and their geometric interpretations.
USEFUL FOR

Mathematicians, geometry enthusiasts, and students studying advanced geometry or linear algebra who are interested in circle properties and geometric proofs.

Jiketz
Messages
2
Reaction score
0
Homework Statement
This is the problem: Given are two parallelograms ABCD and AECF with common diagonal
diagonal AC, where E and F lie inside the parallelogram ABCD.
Show:
The circumcircles of the triangles AEB, BFC, CED and DFA have a point
in common.
I've already given an answer in the pdf, but how can I prove that the point M is also on the remaining two circles? Here is another sketch I drew. Can you please finish the pdf paper ?
Relevant Equations
relevant equations can be found in the pdf solution from me
qukv4djahqia1.jpeg
 

Attachments

Physics news on Phys.org
Interesting exercise. I take Cartesian coordinates to look at as attached figure.
We can write the equation of circle touching three points as
x^2+y^2+lx+my+n=0
Giving three (x,y)s of touching points, we get a set (l,m,n) . We get four (l,m,n) sets for the four circles. The system of four equations of the circles would show one degenerate solution.
That's the design of the proof, though I have not tired yet due to an expected terrible matrix calculation. The symmetry should make it easy.
1677040313458.png
 
Last edited:
  • Like
Likes   Reactions: Lnewqban
Contd. from my previous post
anuttarasammyak said:
The system of four equations of the circles would show one degenerate solution.
The equation of line which connects two commom points of the cirlces i and j, is
(l_i-l_j)x+(m_i-m_j)y+n_i-n_j=0
The system of such six lines meet at a point (x,y) are recuced to three equations.
<br /> \begin{pmatrix}<br /> l_1-l_2 &amp; m_1-m_2 &amp; n_1-n_2 \\<br /> l_2-l_3 &amp; m_2-m_3 &amp; n_2-n_3 \\<br /> l_3-l_4 &amp; m_3-m_4 &amp; n_3-n_4 \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> x \\<br /> y \\<br /> 1 \\<br /> \end{pmatrix}<br /> =<br /> \begin{pmatrix}<br /> 0 \\<br /> 0 \\<br /> 0 \\<br /> \end{pmatrix}<br />
This 3X3 matrix in LHS shoud have determinant zero so that there is a solution.
<br /> \begin{vmatrix}<br /> l_1-l_2 &amp; m_1-m_2 &amp; n_1-n_2 \\<br /> l_2-l_3 &amp; m_2-m_3 &amp; n_2-n_3 \\<br /> l_3-l_4 &amp; m_3-m_4 &amp; n_3-n_4 \\<br /> \end{vmatrix}<br /> =\sum_{i,j,k,q=1}^4 P(ijkq)l_i m_j n_k<br />
where P(ijkq)=0 when any of them equals.
P(ijkq)=1 when ijkq is even pertumation of 1234.
P(ijkq)=-1 when ijkq is odd permutation of 1234.

We expect to get coordinates of M as
<br /> \begin{pmatrix}<br /> l_1-l_4 &amp; m_1-m_4 &amp; n_1-n_4 \\<br /> l_2-l_4 &amp; m_2-m_4 &amp; n_2-n_4 \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> x \\<br /> y \\<br /> 1 \\<br /> \end{pmatrix}<br /> =<br /> \begin{pmatrix}<br /> 0 \\<br /> 0 \\<br /> \end{pmatrix}<br />
or
<br /> \begin{pmatrix}<br /> x \\<br /> y \\<br /> \end{pmatrix}<br /> =\frac{-1}{(l_1-l_4 )(m_2-m_4 )-(l_2-l_4 )(m_1-m_4 )}<br /> \begin{pmatrix}<br /> m_2-m_4 &amp; m_4-m_1 \\<br /> l_4-l_2 &amp; l_1-l_4 \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> n_1-n_4 \\<br /> n_2-n_4 \\<br /> \end{pmatrix}<br />
 
Last edited:
Supplement to my post #2

Say three points ##(a_1,a_2),(b_1,b_2),(c_1,c_2)## is on the circle which is caratterized by (l,m, n)
<br /> \begin{pmatrix}<br /> a_1&amp; a_2 &amp; 1 \\<br /> b_1&amp; b_2 &amp; 1 \\<br /> c_1&amp; c_2 &amp; 1 \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> l \\<br /> m \\<br /> n \\<br /> \end{pmatrix}<br /> =-<br /> \begin{pmatrix}<br /> a_1^2+a_2^2 \\<br /> b_1^2+b_2^2 \\<br /> c_1^2+c_2^2 \\<br /> \end{pmatrix}<br />
Solving it for l,m,n
<br /> \begin{pmatrix}<br /> l \\<br /> m \\<br /> n \\<br /> \end{pmatrix}<br /> =\frac{-1}{det}<br /> \begin{pmatrix}<br /> b_2-c_2 &amp; c_2-a_2 &amp; a_2-b_2  \\<br /> c_1-b_1 &amp; a_1-c_1 &amp; b_1-a_1 \\<br /> b_1c_2-b_2c_1  &amp; c_1a_2-c_2a_1 &amp; a_1b_2-a_2b_1 \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> a_1^2+a_2^2 \\<br /> b_1^2+b_2^2 \\<br /> c_1^2+c_2^2 \\<br /> \end{pmatrix}<br />
where
det=a_1b_2-a_2b_1+b_1c_2-b_2c_1+c_1a_2-c_2a_1

Parameters in this exercise are
<br /> \begin{matrix}<br /> &amp; CircleDAF &amp; CircleDCE &amp; CircleBCF &amp; CircleBAE \\<br /> a_1 &amp; d_1 &amp; d_1 &amp; -d_1 &amp; -d_1 \\<br /> a_2 &amp; d_2 &amp; d_2 &amp; -d_2 &amp; -d_2 \\<br /> b_1 &amp; f_1 &amp; -f_1 &amp; f_1 &amp; -f_1 \\<br /> b_2 &amp; f_2 &amp; -f_2 &amp; f_2 &amp; -f_2 \\c_1 &amp; -1 &amp; 1 &amp; 1 &amp; -1 \\<br /> c_2 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> det &amp; -d_2+f_2+d_1f_2-d_2f_1 &amp; d_2+f_2-d_1f_2+d_2f_1 &amp; -d_2-f_2-d_1f_2+d_2f_1 &amp; d_2-f_2+d_1f_2-d_2f_1<br /> \end{matrix}
As for circle DAF
<br /> \begin{pmatrix}<br /> l \\<br /> m \\<br /> n \\<br /> \end{pmatrix}<br /> =\frac{-1}{det}<br /> \begin{pmatrix}<br /> f_2 &amp; -d_2 &amp; d_2-f_2 \\<br /> -1-f_1 &amp; d_1+1 &amp; -d_1+f_1 \\<br /> f_2&amp; -d_2 &amp; d_1f_2-d_2f_1 \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> d_1^2+d_2^2 \\<br /> f_1^2+f_2^2 \\<br /> 1 \\<br /> \end{pmatrix}<br />
<br /> =\frac{-1}{det}<br /> \begin{pmatrix}<br /> f_2 |d|^2 -d_2 |f|^2 +d_2-f_2 \\<br /> (-1-f_1 )|d|^2+ (d_1+1 )|f|^2 -d_1+f_1 \\<br /> f_2|d|^2 -d_2|f|^2+d_1f_2-d_2f_1 \\<br /> \end{pmatrix}<br />
where
|d|^2=d_1^2+d_2^2
|f|^2=f_1^2+f_2^2
det=-d_2+f_2+d_1f_2-d_2f_1

As for circle DCE
<br /> \begin{pmatrix}<br /> l \\<br /> m \\<br /> n \\<br /> \end{pmatrix}<br /> =\frac{-1}{det}<br /> \begin{pmatrix}<br /> -f_2 &amp; -d_2 &amp; d_2+f_2 \\<br /> 1+f_1 &amp; d_1-1 &amp; -d_1-f_1\\<br /> f_2 &amp; d_2 &amp; -d_1f_2+d_2f_1 \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> d_1^2+d_2^2 \\<br /> f_1^2+f_2^2 \\<br /> 1 \\<br /> \end{pmatrix}<br />
=\frac{-1}{det}<br /> \begin{pmatrix}<br /> -f_2 |d|^2 -d_2 |f|^2+ d_2+f_2 \\<br /> (1+f_1) |d|^2+ (d_1-1 )|f|^2 -d_1-f_1\\<br /> f_2 |d|^2+ d_2|f|^2 -d_1f_2+d_2f_1 \\<br /> \end{pmatrix}<br />
where
det=d_2+f_2-d_1f_2+d_2f_1

As for circle BCF
<br /> \begin{pmatrix}<br /> l \\<br /> m \\<br /> n \\<br /> \end{pmatrix}<br /> =\frac{-1}{det}<br /> \begin{pmatrix}<br /> f_2 &amp; d_2&amp; -d_2-f_2\\<br /> 1-f_1 &amp; -1-d_1 &amp; d_1+f_1\\<br /> -f_2 &amp; -d_2 &amp; -d_1f_2+d_2f_1 \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> d_1^2+d_2^2 \\<br /> f_1^2+f_2^2 \\<br /> 1 \\<br /> \end{pmatrix}<br />
<br /> =\frac{-1}{det}<br /> \begin{pmatrix}<br /> f_2 |d|^2+ d_2|f|^2 -d_2-f_2\\<br /> (1-f_1)|d|^2 +( -1-d_1) |f|^2+ d_1+f_1\\<br /> -f_2 |d|^2 -d_2 |f|^2 -d_1f_2+d_2f_1 \\<br /> \end{pmatrix}<br />
where
det=-d_2-f_2-d_1f_2+d_2f_1
for circle BAE

<br /> \begin{pmatrix}<br /> l \\<br /> m \\<br /> n \\<br /> \end{pmatrix}<br /> =\frac{-1}{det}<br /> \begin{pmatrix}<br /> -f_2 &amp; d_2 &amp; -d_2+f_2 \\<br /> -1+f_1 &amp; -d_1+1 &amp; d_1-f_1 \\<br /> -f_2 &amp; d_2 &amp; d_1f_2-d_2f_1 \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> d_1^2+d_2^2 \\<br /> f_1^2+f_2^2 \\<br /> 1 \\<br /> \end{pmatrix}<br />
<br /> =\frac{-1}{det}<br /> \begin{pmatrix}<br /> -f_2 |d|^2+ d_2 |f|^2 -d_2+f_2 \\<br /> (-1+f_1)|d|^2+ (-d_1+1 )|f|^2+ d_1-f_1 \\<br /> -f_2 |d|^2+ d_2 |f|^2+ d_1f_2-d_2f_1 \\<br /> \end{pmatrix}<br />
where
det=d_2-f_2+d_1f_2-d_2f_1
I hope I have not made careless mistake.
 
Last edited:

Similar threads

Replies
19
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
8
Views
3K
  • · Replies 48 ·
2
Replies
48
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
Replies
5
Views
2K
Replies
54
Views
4K
  • · Replies 62 ·
3
Replies
62
Views
10K