Geometry: prove that point M is touched by 4 circles

Click For Summary

Homework Help Overview

The discussion revolves around proving that a point M is touched by four circles, utilizing Cartesian coordinates and the equations of circles defined by specific points. Participants explore the mathematical relationships and properties of these circles, particularly focusing on the conditions for tangency and the implications of degenerate solutions in the context of a system of equations.

Discussion Character

  • Mathematical reasoning, Problem interpretation, Assumption checking

Approaches and Questions Raised

  • Participants discuss the formulation of equations for circles based on given points and the resulting system of equations. There is mention of the potential complexity involved in matrix calculations and the symmetry that might simplify the problem. Some participants also reference external resources that could provide additional context or methods.

Discussion Status

The discussion is ongoing, with participants sharing various mathematical formulations and approaches. There is an exploration of different interpretations of the problem, particularly regarding the relationships between the circles and the point M. No explicit consensus has been reached, but several lines of reasoning are being actively examined.

Contextual Notes

Participants note the complexity of the calculations involved and express concerns about potential errors in their formulations. There is an emphasis on ensuring the correctness of the determinant calculations and the implications for the existence of solutions.

Jiketz
Messages
2
Reaction score
0
Homework Statement
This is the problem: Given are two parallelograms ABCD and AECF with common diagonal
diagonal AC, where E and F lie inside the parallelogram ABCD.
Show:
The circumcircles of the triangles AEB, BFC, CED and DFA have a point
in common.
I've already given an answer in the pdf, but how can I prove that the point M is also on the remaining two circles? Here is another sketch I drew. Can you please finish the pdf paper ?
Relevant Equations
relevant equations can be found in the pdf solution from me
qukv4djahqia1.jpeg
 

Attachments

Physics news on Phys.org
Interesting exercise. I take Cartesian coordinates to look at as attached figure.
We can write the equation of circle touching three points as
x^2+y^2+lx+my+n=0
Giving three (x,y)s of touching points, we get a set (l,m,n) . We get four (l,m,n) sets for the four circles. The system of four equations of the circles would show one degenerate solution.
That's the design of the proof, though I have not tired yet due to an expected terrible matrix calculation. The symmetry should make it easy.
1677040313458.png
 
Last edited:
  • Like
Likes   Reactions: Lnewqban
Contd. from my previous post
anuttarasammyak said:
The system of four equations of the circles would show one degenerate solution.
The equation of line which connects two commom points of the cirlces i and j, is
(l_i-l_j)x+(m_i-m_j)y+n_i-n_j=0
The system of such six lines meet at a point (x,y) are recuced to three equations.
<br /> \begin{pmatrix}<br /> l_1-l_2 &amp; m_1-m_2 &amp; n_1-n_2 \\<br /> l_2-l_3 &amp; m_2-m_3 &amp; n_2-n_3 \\<br /> l_3-l_4 &amp; m_3-m_4 &amp; n_3-n_4 \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> x \\<br /> y \\<br /> 1 \\<br /> \end{pmatrix}<br /> =<br /> \begin{pmatrix}<br /> 0 \\<br /> 0 \\<br /> 0 \\<br /> \end{pmatrix}<br />
This 3X3 matrix in LHS shoud have determinant zero so that there is a solution.
<br /> \begin{vmatrix}<br /> l_1-l_2 &amp; m_1-m_2 &amp; n_1-n_2 \\<br /> l_2-l_3 &amp; m_2-m_3 &amp; n_2-n_3 \\<br /> l_3-l_4 &amp; m_3-m_4 &amp; n_3-n_4 \\<br /> \end{vmatrix}<br /> =\sum_{i,j,k,q=1}^4 P(ijkq)l_i m_j n_k<br />
where P(ijkq)=0 when any of them equals.
P(ijkq)=1 when ijkq is even pertumation of 1234.
P(ijkq)=-1 when ijkq is odd permutation of 1234.

We expect to get coordinates of M as
<br /> \begin{pmatrix}<br /> l_1-l_4 &amp; m_1-m_4 &amp; n_1-n_4 \\<br /> l_2-l_4 &amp; m_2-m_4 &amp; n_2-n_4 \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> x \\<br /> y \\<br /> 1 \\<br /> \end{pmatrix}<br /> =<br /> \begin{pmatrix}<br /> 0 \\<br /> 0 \\<br /> \end{pmatrix}<br />
or
<br /> \begin{pmatrix}<br /> x \\<br /> y \\<br /> \end{pmatrix}<br /> =\frac{-1}{(l_1-l_4 )(m_2-m_4 )-(l_2-l_4 )(m_1-m_4 )}<br /> \begin{pmatrix}<br /> m_2-m_4 &amp; m_4-m_1 \\<br /> l_4-l_2 &amp; l_1-l_4 \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> n_1-n_4 \\<br /> n_2-n_4 \\<br /> \end{pmatrix}<br />
 
Last edited:
Supplement to my post #2

Say three points ##(a_1,a_2),(b_1,b_2),(c_1,c_2)## is on the circle which is caratterized by (l,m, n)
<br /> \begin{pmatrix}<br /> a_1&amp; a_2 &amp; 1 \\<br /> b_1&amp; b_2 &amp; 1 \\<br /> c_1&amp; c_2 &amp; 1 \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> l \\<br /> m \\<br /> n \\<br /> \end{pmatrix}<br /> =-<br /> \begin{pmatrix}<br /> a_1^2+a_2^2 \\<br /> b_1^2+b_2^2 \\<br /> c_1^2+c_2^2 \\<br /> \end{pmatrix}<br />
Solving it for l,m,n
<br /> \begin{pmatrix}<br /> l \\<br /> m \\<br /> n \\<br /> \end{pmatrix}<br /> =\frac{-1}{det}<br /> \begin{pmatrix}<br /> b_2-c_2 &amp; c_2-a_2 &amp; a_2-b_2  \\<br /> c_1-b_1 &amp; a_1-c_1 &amp; b_1-a_1 \\<br /> b_1c_2-b_2c_1  &amp; c_1a_2-c_2a_1 &amp; a_1b_2-a_2b_1 \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> a_1^2+a_2^2 \\<br /> b_1^2+b_2^2 \\<br /> c_1^2+c_2^2 \\<br /> \end{pmatrix}<br />
where
det=a_1b_2-a_2b_1+b_1c_2-b_2c_1+c_1a_2-c_2a_1

Parameters in this exercise are
<br /> \begin{matrix}<br /> &amp; CircleDAF &amp; CircleDCE &amp; CircleBCF &amp; CircleBAE \\<br /> a_1 &amp; d_1 &amp; d_1 &amp; -d_1 &amp; -d_1 \\<br /> a_2 &amp; d_2 &amp; d_2 &amp; -d_2 &amp; -d_2 \\<br /> b_1 &amp; f_1 &amp; -f_1 &amp; f_1 &amp; -f_1 \\<br /> b_2 &amp; f_2 &amp; -f_2 &amp; f_2 &amp; -f_2 \\c_1 &amp; -1 &amp; 1 &amp; 1 &amp; -1 \\<br /> c_2 &amp; 0 &amp; 0 &amp; 0 &amp; 0 \\<br /> det &amp; -d_2+f_2+d_1f_2-d_2f_1 &amp; d_2+f_2-d_1f_2+d_2f_1 &amp; -d_2-f_2-d_1f_2+d_2f_1 &amp; d_2-f_2+d_1f_2-d_2f_1<br /> \end{matrix}
As for circle DAF
<br /> \begin{pmatrix}<br /> l \\<br /> m \\<br /> n \\<br /> \end{pmatrix}<br /> =\frac{-1}{det}<br /> \begin{pmatrix}<br /> f_2 &amp; -d_2 &amp; d_2-f_2 \\<br /> -1-f_1 &amp; d_1+1 &amp; -d_1+f_1 \\<br /> f_2&amp; -d_2 &amp; d_1f_2-d_2f_1 \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> d_1^2+d_2^2 \\<br /> f_1^2+f_2^2 \\<br /> 1 \\<br /> \end{pmatrix}<br />
<br /> =\frac{-1}{det}<br /> \begin{pmatrix}<br /> f_2 |d|^2 -d_2 |f|^2 +d_2-f_2 \\<br /> (-1-f_1 )|d|^2+ (d_1+1 )|f|^2 -d_1+f_1 \\<br /> f_2|d|^2 -d_2|f|^2+d_1f_2-d_2f_1 \\<br /> \end{pmatrix}<br />
where
|d|^2=d_1^2+d_2^2
|f|^2=f_1^2+f_2^2
det=-d_2+f_2+d_1f_2-d_2f_1

As for circle DCE
<br /> \begin{pmatrix}<br /> l \\<br /> m \\<br /> n \\<br /> \end{pmatrix}<br /> =\frac{-1}{det}<br /> \begin{pmatrix}<br /> -f_2 &amp; -d_2 &amp; d_2+f_2 \\<br /> 1+f_1 &amp; d_1-1 &amp; -d_1-f_1\\<br /> f_2 &amp; d_2 &amp; -d_1f_2+d_2f_1 \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> d_1^2+d_2^2 \\<br /> f_1^2+f_2^2 \\<br /> 1 \\<br /> \end{pmatrix}<br />
=\frac{-1}{det}<br /> \begin{pmatrix}<br /> -f_2 |d|^2 -d_2 |f|^2+ d_2+f_2 \\<br /> (1+f_1) |d|^2+ (d_1-1 )|f|^2 -d_1-f_1\\<br /> f_2 |d|^2+ d_2|f|^2 -d_1f_2+d_2f_1 \\<br /> \end{pmatrix}<br />
where
det=d_2+f_2-d_1f_2+d_2f_1

As for circle BCF
<br /> \begin{pmatrix}<br /> l \\<br /> m \\<br /> n \\<br /> \end{pmatrix}<br /> =\frac{-1}{det}<br /> \begin{pmatrix}<br /> f_2 &amp; d_2&amp; -d_2-f_2\\<br /> 1-f_1 &amp; -1-d_1 &amp; d_1+f_1\\<br /> -f_2 &amp; -d_2 &amp; -d_1f_2+d_2f_1 \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> d_1^2+d_2^2 \\<br /> f_1^2+f_2^2 \\<br /> 1 \\<br /> \end{pmatrix}<br />
<br /> =\frac{-1}{det}<br /> \begin{pmatrix}<br /> f_2 |d|^2+ d_2|f|^2 -d_2-f_2\\<br /> (1-f_1)|d|^2 +( -1-d_1) |f|^2+ d_1+f_1\\<br /> -f_2 |d|^2 -d_2 |f|^2 -d_1f_2+d_2f_1 \\<br /> \end{pmatrix}<br />
where
det=-d_2-f_2-d_1f_2+d_2f_1
for circle BAE

<br /> \begin{pmatrix}<br /> l \\<br /> m \\<br /> n \\<br /> \end{pmatrix}<br /> =\frac{-1}{det}<br /> \begin{pmatrix}<br /> -f_2 &amp; d_2 &amp; -d_2+f_2 \\<br /> -1+f_1 &amp; -d_1+1 &amp; d_1-f_1 \\<br /> -f_2 &amp; d_2 &amp; d_1f_2-d_2f_1 \\<br /> \end{pmatrix}<br /> \begin{pmatrix}<br /> d_1^2+d_2^2 \\<br /> f_1^2+f_2^2 \\<br /> 1 \\<br /> \end{pmatrix}<br />
<br /> =\frac{-1}{det}<br /> \begin{pmatrix}<br /> -f_2 |d|^2+ d_2 |f|^2 -d_2+f_2 \\<br /> (-1+f_1)|d|^2+ (-d_1+1 )|f|^2+ d_1-f_1 \\<br /> -f_2 |d|^2+ d_2 |f|^2+ d_1f_2-d_2f_1 \\<br /> \end{pmatrix}<br />
where
det=d_2-f_2+d_1f_2-d_2f_1
I hope I have not made careless mistake.
 
Last edited:

Similar threads

Replies
19
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
8
Views
3K
  • · Replies 48 ·
2
Replies
48
Views
6K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
Replies
5
Views
3K
Replies
54
Views
4K
  • · Replies 62 ·
3
Replies
62
Views
10K