Getting from complex domain to real domain

  • Context: High School 
  • Thread starter Thread starter jaydnul
  • Start date Start date
  • Tags Tags
    Complex numbers
Click For Summary
SUMMARY

The discussion centers on the transition from the expression Acosx to Ae^(jx) using Euler's formula, emphasizing the mathematical operations involved with complex numbers. Participants clarify that taking the real part of a complex exponential is a standard mathematical operation, akin to extracting coordinates from a point in two-dimensional space. The concept of linear independence in linear algebra is also highlighted, demonstrating that the vectors 1 and i are independent over the real numbers, which underpins the validity of the transition. Historical context regarding the invention of these operations is acknowledged but deemed less relevant than their current acceptance in mathematics.

PREREQUISITES
  • Understanding of Euler's formula and its proof
  • Basic knowledge of complex numbers and their properties
  • Familiarity with linear algebra concepts, particularly linear independence
  • Awareness of the relationship between trigonometric functions and complex exponentials
NEXT STEPS
  • Study the implications of Euler's formula in signal processing
  • Explore linear algebra applications in complex number theory
  • Learn about the historical development of complex analysis
  • Investigate the geometric interpretation of complex numbers in the Argand plane
USEFUL FOR

Mathematicians, physics students, engineers, and anyone interested in the applications of complex numbers and Euler's formula in various fields.

jaydnul
Messages
558
Reaction score
15
Hi!

I am ok with understanding Euler's formula and how its proven. It is basic mathematic operations that are made possible by the characteristics of i, cos, sin, and exp.

What still makes me uncomfortable is the jump we make at the very beginning or end of calculations, basically Acosx <==> Ae^(jx). The explanations are usually the "real" part of the exponential, and Euler's formula is used to help with this.

But for my complete understanding, taking the real part of something just ins't a "normal" mathematical operation if that makes sense (it is invented for dealing with complex numbers). Is there any other explaination for the transistion we make Acosx <==> Ae^(jx) and why we can do that?
 
Physics news on Phys.org
jaydnul said:
Hi!

I am ok with understanding Euler's formula and how its proven. It is basic mathematic operations that are made possible by the characteristics of i, cos, sin, and exp.

What still makes me uncomfortable is the jump we make at the very beginning or end of calculations, basically Acosx <==> Ae^(jx). The explanations are usually the "real" part of the exponential, and Euler's formula is used to help with this.

But for my complete understanding, taking the real part of something just ins't a "normal" mathematical operation if that makes sense (it is invented for dealing with complex numbers). Is there any other explaination for the transistion we make Acosx <==> Ae^(jx) and why we can do that?
It is linear algebra. The vectors ##\vec{1}## and ##\vec{\mathrm{i}}## are linear independent over the real numbers. That means that any real expression
$$
\alpha \vec{1} + \beta \vec{\mathrm{i}} = \alpha' \vec{1} +\beta' \vec{\mathrm{i}}
$$
implies
$$
(\alpha-\alpha')\cdot \vec{1} + (\beta-\beta')\cdot \vec{\mathrm{i}}=\vec{0}
$$
and therefore ##\alpha=\alpha' ## and ##\beta=\beta'## by linear independence.
 
Another picture of looking at the complex numbers is ##\mathbb{C}=\mathbb{R}[T]/\langle T^2-1 \rangle## which is a quotient ring of the polynomials over the real numbers in one variable ##T.## A complex number is thus a polynomial ##\alpha+\beta\cdot \vec{\mathrm{i}} =\alpha +\beta \cdot T## where we identify ##T^2## with ##-1.## Since ##0 \neq T \neq 1,## we can conclude from ##\alpha+\beta\cdot \vec{\mathrm{i}}=\alpha+\beta\cdot T=0## that ##\alpha = \beta=0.##
 
jaydnul said:
Hi!

I am ok with understanding Euler's formula and how its proven. It is basic mathematic operations that are made possible by the characteristics of i, cos, sin, and exp.
Good. That is the hard part.
jaydnul said:
What still makes me uncomfortable is the jump we make at the very beginning or end of calculations, basically Acosx <==> Ae^(jx). The explanations are usually the "real" part of the exponential, and Euler's formula is used to help with this.

But for my complete understanding, taking the real part of something just ins't a "normal" mathematical operation if that makes sense (it is invented for dealing with complex numbers).
It is very normal. If you have a point in two dimensional space, ##(x,y) \in \mathbb{R}## X ##\mathbb{R}## ,it is completely normal to look at its ##x## value. So looking at the real part of ##Ae^{(jx)} = (A\cos(x), A\sin(x))## is normal.
(The question of how and why it was invented is a historical question. It is now standard mathematics, which is all that matters for this discussion.)
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
6K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 7 ·
Replies
7
Views
7K
  • · Replies 3 ·
Replies
3
Views
3K