Getting geodesic from variational principle

Click For Summary
SUMMARY

The discussion focuses on deriving the geodesic equation from a variational principle using a specific metric. The metric provided is $$ds^2 = \frac{dr^2 + r^2 d\theta ^2}{r^2-a^2} - \frac{r^2 dr^2}{(r^2-a^2)^2}$$. The user attempts to prove the geodesic equation $$a^2 (\frac{dr}{d \theta})^2 + a^2 r^2 = K r^4$$ but encounters discrepancies in the derived equations. The confusion arises from the choice of Lagrangian used in the variational method, suggesting a need for clarity on the correct form of the Lagrangian to achieve the desired results.

PREREQUISITES
  • Understanding of variational principles in physics
  • Familiarity with Lagrangian mechanics
  • Knowledge of geodesics in differential geometry
  • Proficiency in calculus, particularly in dealing with derivatives and integrals
NEXT STEPS
  • Study the derivation of geodesics from the Euler-Lagrange equations
  • Learn about the properties and applications of Christoffel symbols in general relativity
  • Explore the relationship between different forms of Lagrangians in variational calculus
  • Investigate cyclic integrals and their implications in Lagrangian systems
USEFUL FOR

Mathematicians, physicists, and students studying general relativity or advanced mechanics, particularly those interested in the application of variational principles to derive geodesic equations.

LCSphysicist
Messages
644
Reaction score
163
Homework Statement
.
Relevant Equations
.
The metric is $$ds^2 = \frac{dr^2 + r^2 d\theta ^2}{r^2-a^2} - \frac{r^2 dr^2}{(r^2-a^2)^2}$$

I need to prove the geodesic is: $$a^2 (\frac{dr}{d \theta})^2 + a^2 r^2 = K r^4$$

My method was to variate the action ##\int\frac{(\frac{dr}{d\theta})^2 + r^2 }{r^2-a^2} - \frac{r^2 (\frac{dr}{d\theta})^2}{(r^2-a^2)^2} d \theta##

But the equation i am getting is $$a^2 (\frac{dr}{d \theta})^2 + r^2 = K (r^2-a^2)^2$$
Which can not be reduced to the answer.

I am a little confused, i could simpy calculate the Christoffel symbol, but i think this variation method easier, yet i am not sure how to use it.

So basically, my guess on why i have got the wrong answer is that the "lagrangean" i am variating is wrong. So what lagrangean indeed give us the right answer? Only ##g_{ab} \frac{dx^a}{ds} \frac{dx^b}{ds}= 1 ## and ##\sqrt{g_{ab} \frac{dx^a}{d\lambda} \frac{dx^b}{d\lambda}}##? Or the lagrangean i used above is right, and i have done some algebric error?
 
Physics news on Phys.org
Your approach failed because in general the Euler-Lagrange equations produced from L_1(r, dr/d\theta) are not the same as those obtained from L_2(r, dr/d\theta) = \sqrt{L_1}: <br /> \begin{split}<br /> \frac{d}{d\theta} \left( \frac{\partial L_2}{\partial r&#039;}\right) - \frac{\partial L_2}{\partial r}<br /> &amp;= \frac{d}{d\theta} \left( \frac{1}{2L_2} \frac{\partial L_1}{\partial r&#039;} \right) - \frac{1}{2L_2}\frac{\partial L_1}{\partial r} \\<br /> &amp;= \frac{1}{2L_2} \left[\frac{d}{d\theta} \left( \frac{\partial L_1}{\partial r&#039;}\right) - \frac{\partial L_1}{\partial r}\right] + \frac{\partial L_1}{\partial r&#039;} \frac{d}{d\theta}\left( \frac{1}{2L_2} \right) \\<br /> &amp;\neq \frac{1}{2L_2} \left[\frac{d}{d\theta} \left( \frac{\partial L_1}{\partial r&#039;}\right) - \frac{\partial L_1}{\partial r}\right]<br /> \end{split}<br /> If you take s as the independent variable then you can work with f(r) r&#039;^2 + g(r) \theta&#039;^2 directly because by definition its total derivative with respect to s is zero and you end up with the same Euler-Lagrange equation as you obtain from \sqrt{f(r) r&#039;^2 + g(r) \theta&#039;^2}.
 
You have a Lagrangian system
$$L=\dot r^2\Big(\frac{1}{r^2-a^2}-\frac{r^2}{(r^2-a^2)^2}\Big)+\frac{r^2}{r^2-a^2}\dot\theta^2.$$
You must consider this system at the energy level ##L=1##
perhaps the following cyclic integral will be of use
$$\frac{\partial L}{\partial \dot \theta}=const$$
 
  • Like
Likes   Reactions: vanhees71

Similar threads

  • · Replies 4 ·
Replies
4
Views
964
Replies
1
Views
2K
Replies
6
Views
2K
  • · Replies 46 ·
2
Replies
46
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
Replies
7
Views
2K