Solving Curl A in Spherical Coordinates: Tips & Hints

phos19
Messages
6
Reaction score
0
Homework Statement
Let $$ \vec{B} =\dfrac{1}{4 \pi} \dfrac{-3}{r^4} ( 3\cos^2{\theta} - 1) \hat{u_r} + \dfrac{1}{4 \pi} \dfrac{1}{r^4} ( - 6 \cos{\theta} \sin{\theta} ) \hat{u_{\theta}} $$ (spherical unit vectors)


Find ##\vec{A}## such that ## \vec{B} = \nabla \times \vec{A}##
Relevant Equations
(The ##\vec{B}## is divergenceless !)
I've tried writing the curl A (in spherical coord.) and equating the components, but I end up with something that is beyond me:

\begin{equation}
{\displaystyle {\begin{aligned}{B_r = \dfrac{1}{4 \pi} \dfrac{-3}{r^4} ( 3\cos^2{\theta} - 1) =\frac {1}{r\sin \theta }}\left({\frac {\partial }{\partial \theta }}\left(A_{\varphi }\sin \theta \right)-{\frac {\partial A_{\theta }}{\partial \varphi }}\right)&\\B_{\theta}= \dfrac{1}{4 \pi} \dfrac{1}{r^4} ( - 6 \cos{\theta} \sin{\theta} ) ={}+{\frac {1}{r}}\left({\frac {1}{\sin \theta }}{\frac {\partial A_{r}}{\partial \varphi }}-{\frac {\partial }{\partial r}}\left(rA_{\varphi }\right)\right)&\\B_{\varphi}= 0={}+{\frac {1}{r}}\left({\frac {\partial }{\partial r}}\left(rA_{\theta }\right)-{\frac {\partial A_{r}}{\partial \theta }}\right)&\end{aligned}}}
\end{equation}

Is there a "trick" to solve this , or maybe some vector identity to simplify the problem ?
Any hints are greatly appreciated , thanks!
 
Last edited:
Physics news on Phys.org
You can assume that nothing depends on \phi, and the third equation is satisfied by A_r = A_\theta = 0. That leaves <br /> \begin{split}<br /> B_r &amp;= \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (A_\phi \sin \theta) \\<br /> B_\theta &amp;= -\frac{1}{r} \frac{\partial}{\partial r} (r A_\phi) \end{split} and now substituting A_\phi = r^\alpha f(\theta) will solve the problem.
 
  • Like
Likes vanhees71, PhDeezNutz and topsquark
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top