A Going from Cauchy Stress Tensor to GR's Energy Momentum Tensor

Luai
Messages
1
Reaction score
0
TL;DR Summary
Is there a mathematical operation that transforms the Cauchy Stress Tensor to the Energy Momentum Tensor? If the former lives in 3D and latter lives in 4D, how come they have the same units?
  1. Why do the Cauchy Stress Tensor & the Energy Momentum Tensor have the same SI units? Shouldn't adding time as a dimension changes the Energy Momentum Tensor's units?
  2. Did Einstein start with the Cauchy Tensor when he started working on the right hand side of the field equations of GR?
  3. If so, What tensor operation(s) would transform the 3D Cauchy Tensor into the 4D Energy Momentum Tensor of GR?
 
Last edited by a moderator:
Physics news on Phys.org
@Luai I have edited your post to remove the bold. There is no need to put an entire post in bold.
 
  • Like
Likes topsquark, Vanadium 50 and Luai
Luai said:
Is there a mathematical operation that transforms the Cauchy Stress Tensor to the Energy Momentum Tensor?
No. They are two different tensors.

Luai said:
If the former lives in 3D and latter lives in 4D, how come they have the same units?
The units of stress are the same as the units of energy density. Stress is force per unit area. Energy density is energy per unit volume, i.e., (force x distance) / (area x distance), i.e., the same as force per unit area.

Luai said:
Shouldn't adding time as a dimension changes the Energy Momentum Tensor's units?
No. Why would it?

Luai said:
Did Einstein start with the Cauchy Tensor when he started working on the right hand side of the field equations of GR?
No.
 
  • Like
Likes topsquark and Luai
In relativistic physics, the "Cauchy stress tensor" form the space-space components of the energy-momentum tensor. The time-time component is the energy density and the time-space components are the momentum density (times ##c##).

The interesting thing with GR is that when you take the "mechanical energy momentum tensor" (ideal/viscous fluids, elastic bodies,...) on the right-hand side if you have a solution of the Einstein equations, due to the Bianchi identities the equations of motion for the matter, which is given by ##\vec{\nabla}_{\mu} T^{\mu \nu}=0## is automatically fulfilled, i.e., you can get a fully consistent solution of the Einstein equations only if you simultaneously solve the mechanics equations of motion for the matter.

A very nice treatment of all this can be found in

D. E. Soper, Classical Field Theory
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top