I GR: Attractors & Liouville's Theorem

atyy
Science Advisor
Messages
15,170
Reaction score
3,379
TL;DR Summary
Does GR have attractors?
In classical Hamiltonian mechanics, because of Liouville's theorem about the volume of phase space being preserved by time evolution, there are no attractors.

Naively, I think of the Raychaudhuri equation in GR as showing a shrinking volume. However, I guess Raychaudhri's equation does not deal with the phase space of GR.

Does GR have attractors?
Is there something like the Liouville theorem in GR, especially since GR has a Hamiltonian formulation?
 
  • Like
Likes Demystifier and vanhees71
Physics news on Phys.org
Just a guess, but given that very little is known about the global properties of solutions to the initial value problem, I would say that it is a very hard question.
 
  • Like
Likes atyy and vanhees71
atyy said:
Is there something like the Liouville theorem in GR, especially since GR has a Hamiltonian formulation?
Every Hamiltonian system obeys the Liouville theorem. GR is not an exception. Note, however, that the phase space in field theories is infinite dimensional. In particular, the 3-dimensional volume of a lump of matter (which may shrink due to gravitational collapse) has nothing to do with the infinite-dimensional phase-space volume.
 
atyy said:
Naively, I think of the Raychaudhuri equation in GR as showing a shrinking volume.
GR is invariant under the time reversal. Raychaudhuri equation can describe also the expansion. In the black-hole context, such an expanding solution is called a white hole. Such solutions are usually discarded because they require unrealistic initial conditions, or equivalently, because for such solutions entropy decreases with time.
 
Demystifier said:
Every Hamiltonian system obeys the Liouville theorem. GR is not an exception. Note, however, that the phase space in field theories is infinite dimensional. In particular, the 3-dimensional volume of a lump of matter (which may shrink due to gravitational collapse) has nothing to do with the infinite-dimensional phase-space volume.
Are you sure the theorem holds in field theories?
 
martinbn said:
Are you sure the theorem holds in field theories?
Formally yes, but I guess it's not fully rigorous due to the infinite number of degrees of freedom.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...

Similar threads

Replies
7
Views
3K
Replies
9
Views
1K
Replies
55
Views
5K
Replies
118
Views
10K
Replies
10
Views
1K
Back
Top