1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Graphing sin and cos functions

  1. Sep 8, 2010 #1
    1. The problem statement, all variables and given/known data

    plot x(t) = 10cos((pi*t)-(pi/4))

    2. Relevant equations

    pi/4 is the shift to the right

    10 is the amplitude of the graph

    pi is the radian frequency

    3. The attempt at a solution

    so i got the amplitude and shift to the right by pi/4 part but as for the radian frequency, my plot doesnt seem right. does pi mean that one cos wave occurs in a pi interval? thanks in advance
    1. The problem statement, all variables and given/known data



    2. Relevant equations



    3. The attempt at a solution
     
  2. jcsd
  3. Sep 9, 2010 #2

    ehild

    User Avatar
    Homework Helper

    Yes. pi is the angular frequency, w. How is it related to the time period, T?

    ehild
     
  4. Sep 9, 2010 #3

    Mark44

    Staff: Mentor

    I don't think so. You could write this function as x(t) = 10 cos(pi(t - 1/4)). The graph of x(t) = 10 cos(pi*t) has two transformations: a vertical expansion by a factor of 10 (that's your amplitude), and a compression toward the vertical axis by a factor of pi. This compression means that instead of having t intercepts at +/-pi/2, +/-3pi/2, +/-5pi/2, and so on, x(t) = 10 cos(pi*t) has t intercepts at +/-1/2, +/-3/2, +/-5/2, and so on.
    The -1/4 term causes a shift to the right by 1/4 unit of the graph of x(t) = 10 cos(pi*t).
     
  5. Sep 9, 2010 #4
    thanks for the help! T is 2pi/w so the period i got was 2. one cos wave occurs within 0-2
     
  6. Sep 9, 2010 #5

    ehild

    User Avatar
    Homework Helper

    Yes, but do not forget that it is shifted, so its has the maximum value where (pi*t)-(pi/4)=0.

    ehild
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook