MHB *gre.al.9 GRE Exam Inequality with modulus or absolute value

AI Thread Summary
The discussion focuses on solving the inequality |y+3| ≤ 4, leading to the conclusion that -7 ≤ y ≤ 1. Participants clarify that this does not assume y is positive, as the solution encompasses both negative and positive values of y. The breakdown of the absolute value into two cases—one for when y+3 is non-negative and one for when it is negative—illustrates the correct approach to solving the inequality. The final interval indicates that y can take on values from -7 to 1, confirming the range of possible signs for y. Understanding the definition and properties of absolute values is crucial in this context.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
given
$|y+3|\le 4$
we don't know if y is plus or negative so
$y+3\le 4 \Rightarrow y\le 1$
and
$-(y+3)\le 4$
reverse the inequality
$ y+3 \ge -4$
then isolate y
$y \ge -7$
the interval is
$-7 \le y \le 1$
 
Last edited:
Mathematics news on Phys.org
$|y+3| \le 4 \implies -4 \le y+3 \le 4 \implies -7 \le y \le 1$
 
That was quick..
Doesn't that assume y is positive
 
karush said:
That was quick..
Doesn't that assume y is positive

what does the inequality, ${\color{red}-7 \le y} \le 1$, tell you about the possible signs for $y$?

also, see attached graph ...
 

Attachments

  • abs_inequality.jpg
    abs_inequality.jpg
    14.8 KB · Views: 107
definition of absolute value ...

$|\text{whatever}| = \left\{\begin{matrix}
\text{whatever}, & \text{if whatever}\ge 0\\
-(\text{whatever}), & \text{if whatever}< 0
\end{matrix}\right.$

therefore ...

$|y+3| = \left\{\begin{matrix}
y+3 \, , &\text{if }y+3 \ge 0 \\
-(y+3) & \text{if }y+3<0
\end{matrix}\right.$

$|y+3| \le 4$

case 1, $y+3 \ge 0$

$y+3 \le 4 \implies y \le 1$

case 2, $y+3 < 0$

$-(y+3) \le 4 \implies y+3 \ge -4 \implies y \ge -7$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
6
Views
1K
Replies
7
Views
2K
Replies
1
Views
1K
Replies
1
Views
2K
Replies
11
Views
2K
Replies
3
Views
1K
Replies
10
Views
2K
Replies
8
Views
2K
Replies
5
Views
2K
Back
Top