MHB Group Velocity and Phase Velocity

Joystar77
Messages
122
Reaction score
0
I have no idea how to do this or where to start. Can someone please help me?

Problem 4.4- Suppose n o and n e are given. In (a) you only need to find the magnitude of the group velocity. Problem #2 in HW 10 may be helpful. You can also directly use the definition of group velocity, i.e., v g = triangle k w (k), taking into account the equation of the wave normal surface.

4.4- Group Velocity and Phase Velocity

a.) Derive an expression for the group velocity of the extraordinary wave in a uniaxial crystal as a function of the polar angle 0 of the propagation vector.

b.) Derive an expression for the angle a between the phase velocity and the group velocity. This angle is also the angle between the field vectors E and D.

c.) Show that a = 0 when 0 = 0, ½ pi. Find the angle at which a is maximized and obtain an expression for a max. Calculate this angle a max for quartz with n o = 1.554, n e = 1.553.

d.) Show that for no or ne, the maximum angular separation a max occurs at 0 = 45 degrees; show that a max is proportional to [ n o – n e].
 
Mathematics news on Phys.org
I'm afraid no one is going to be able to help you without more information. Certainly no one here knows what "problem #2 in HW 10" is!

What are you using as the definitions of "phase velocity" and "group velocity"?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top