Hamiltonian formulation of classical mechanics as symplectic manifold

Click For Summary
SUMMARY

The Hamiltonian formulation of classical mechanics defines the phase space as a symplectic manifold characterized by a closed non-degenerate 2-form, denoted as ##\omega##. This 2-form can be expressed locally as ##\omega = dq_i \wedge dp_i##, fulfilling the conditions of Darboux's theorem. The non-degeneracy of ##\omega## is confirmed by the determinant condition, where ##det(a_{ij}) \neq 0## indicates that the form maintains constant rank. Additionally, the matrix ##a_{ij}## representing the coefficients of the 2-form is assumed to be skew-symmetric.

PREREQUISITES
  • Understanding of symplectic geometry and manifolds
  • Familiarity with differential forms and their properties
  • Knowledge of Darboux's theorem in the context of symplectic manifolds
  • Basic linear algebra concepts, particularly determinants and matrix properties
NEXT STEPS
  • Study the implications of Darboux's theorem in symplectic geometry
  • Explore the properties of non-degenerate 2-forms in manifold theory
  • Learn about the role of skew-symmetric matrices in symplectic structures
  • Investigate applications of Hamiltonian mechanics in modern physics
USEFUL FOR

Mathematicians, physicists, and students of classical mechanics interested in the geometric foundations of Hamiltonian dynamics and symplectic geometry.

cianfa72
Messages
2,946
Reaction score
308
TL;DR
About the definition of symplectic manifold structure employed in the hamiltonian formulation of classical mechanics
Hi, in the Hamiltonian formulation of classical mechanics, the phase space is a symplectic manifold. Namely there is a closed non-degenerate 2-form ##\omega## that assign a symplectic structure to the ##2m## even dimensional manifold (the phase space).

As explained here Darboux's theorem since ##\omega## is by definition closed from Poincare lemma there exist locally a 1-form ##\theta## such that locally ##\omega = d\theta##.

However I've not a clear understanding why such ##d\theta## fulfills the Darboux's theorem hypothesis hence there are local canonical coordinates such that ##\omega## can be written as
$$\omega = dq_i \wedge dp_i$$
If ##\omega## was a rank ##m## form then by definition ##(d\theta)^m \neq 0## and of course ##\theta \wedge (d\theta)^m = 0## since it would be a ##2m+1## form defined on a 2m-dimensional manifold.

So the question is: why ##\omega## is assumed to be a 2-form with constant rank ##m## ? Thanks.
 
Last edited:
Physics news on Phys.org
cianfa72 said:
So the question is: why ##\omega## is assumed to be a 2-form with constant rank ##m## ? Thanks.
It is not assumed, it follows from the fact that it is non-degenerate. Write it locally as ##\omega=\sum_{i,j} a_{ij}\theta^i\wedge\theta^j##, then ##\wedge^m \omega = det(a_{ij})\theta^1\wedge\cdots\wedge\theta^{2m}## is non-zero exactly when ##det(a_{ij})## is non-zero exactly when ##\omega## is non-degenerate.
 
  • Informative
Likes   Reactions: cianfa72
martinbn said:
Write it locally as ##\omega=\sum_{i,j} a_{ij}\theta^i\wedge\theta^j##
Ah ok, so every 2-form can be always written as linear combination of wedge products of covector (1-form) basis of the dual space at each point on the manifold.

Then the definition of non-degenerate is equivalent (iff condition) to ##det(a_{ij}) \neq 0##.
 
cianfa72 said:
Ah ok, so every 2-form can be always written as linear combination of wedge products of covector (1-form) basis of the dual space at each point on the manifold.

Then the definition of non-degenerate is equivalent (iff condition) to ##det(a_{ij}) \neq 0##.
Yes, if the ##\theta^i## form a basis of 1-forms, then the ##\theta^i\wedge\theta^j## form a basis of 2-forms.
 
  • Like
Likes   Reactions: cianfa72
martinbn said:
Write it locally as ##\omega=\sum_{i,j} a_{ij}\theta^i\wedge\theta^j##, then ##\wedge^m \omega = det(a_{ij})\theta^1\wedge\cdots\wedge\theta^{2m}## is non-zero exactly when ##det(a_{ij})## is non-zero exactly when ##\omega## is non-degenerate.
Sorry to resume this old thread, in the definition of the 2-form ##\omega##, is the matrix ##a_{ij}## (with even dimension) assumed to be skew-symmetric (with even dimension)? Thanks.
 
Last edited:
Yes.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 27 ·
Replies
27
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 376 ·
13
Replies
376
Views
23K