A Hamilton's Method with Lagrange Equation and Constraint

AI Thread Summary
The discussion focuses on applying Hamilton's Principle using Lagrangian mechanics, specifically in the context of a closed loop robot linkage system. The user is comfortable with formulating Hamilton's Principle and deriving Euler Lagrange Equations but seeks a simple example of incorporating constraints using Lagrange multipliers. They request guidance on applying an equality constraint to Hamilton's Principle, particularly for a particle moving in a vertical plane under gravity with a specific constraint equation. The user expresses their background as a retiring mechanical engineer with limited mathematical skills, highlighting their desire to understand these concepts better. A straightforward example would enhance their understanding of combining these advanced mathematical theories.
Trying2Learn
Messages
375
Reaction score
57
TL;DR Summary
How do you apply constraint to calculus of variations
Good Morning

I am "comfortable" with formulating Hamilton's Principle with a Lagrangian (KE - PE), conducting the calculus of variations and obtaining the Euler Lagrange Equations. Advanced mathematical theory, is beyond me.

I also have a minimal understanding of using Lagrange multipliers.

I would like to combine both, say, for a closed loop on a robot linkage system

My issue is that I would like to see a SIMPLE example of how to apply a constraint (any constraint but formulated as an equality) to Hamilton's Principle

Could someone point me to a simple example?

I am a retiring mechanical engineer with a minimal mathematical skill set. My recent equations are now curiosity -- things I never learned.
 
Physics news on Phys.org
Perhaps the simplest example is to write formulas for the case when a particle moves in the vertical plane (x,y) in the standard gravity g and the constraint is ax+by=0
 
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Back
Top