Graduate Hamilton's Method with Lagrange Equation and Constraint

Click For Summary
The discussion focuses on applying Hamilton's Principle using Lagrangian mechanics, specifically in the context of a closed loop robot linkage system. The user is comfortable with formulating Hamilton's Principle and deriving Euler Lagrange Equations but seeks a simple example of incorporating constraints using Lagrange multipliers. They request guidance on applying an equality constraint to Hamilton's Principle, particularly for a particle moving in a vertical plane under gravity with a specific constraint equation. The user expresses their background as a retiring mechanical engineer with limited mathematical skills, highlighting their desire to understand these concepts better. A straightforward example would enhance their understanding of combining these advanced mathematical theories.
Trying2Learn
Messages
375
Reaction score
57
TL;DR
How do you apply constraint to calculus of variations
Good Morning

I am "comfortable" with formulating Hamilton's Principle with a Lagrangian (KE - PE), conducting the calculus of variations and obtaining the Euler Lagrange Equations. Advanced mathematical theory, is beyond me.

I also have a minimal understanding of using Lagrange multipliers.

I would like to combine both, say, for a closed loop on a robot linkage system

My issue is that I would like to see a SIMPLE example of how to apply a constraint (any constraint but formulated as an equality) to Hamilton's Principle

Could someone point me to a simple example?

I am a retiring mechanical engineer with a minimal mathematical skill set. My recent equations are now curiosity -- things I never learned.
 
Physics news on Phys.org
Perhaps the simplest example is to write formulas for the case when a particle moves in the vertical plane (x,y) in the standard gravity g and the constraint is ax+by=0
 
Thread 'What is the pressure of trapped air inside this tube?'
As you can see from the picture, i have an uneven U-shaped tube, sealed at the short end. I fill the tube with water and i seal it. So the short side is filled with water and the long side ends up containg water and trapped air. Now the tube is sealed on both sides and i turn it in such a way that the traped air moves at the short side. Are my claims about pressure in senarios A & B correct? What is the pressure for all points in senario C? (My question is basically coming from watching...

Similar threads

Replies
25
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K