- 744

- 8

**1. Homework Statement**

Potential energy of electron in harmonic potential can be described as ##V(x)=\frac{m\omega _0^2x^2}{2}-eEx##, where E is electric field that has no gradient.

What are the energies of eigenstates of an electron in potential ##V(x)##? Also calculate ##<ex>##.

HINT: Use ##(x-a)^2=x^2-2ax+a^2##

**2. Homework Equations**

**3. The Attempt at a Solution**

I am sorry, to say, but I have no idea how start here.

I know that if there were no electric field, the energies would be ##E_n=\hbar \omega (n+1/2)##. Since there is Electric field, I assume I have to solve ##\hat{H}\psi =E\psi ## for ##\hat{H}=\hat{T}+\hat{V}##... but, how on earth can i do that?