(has been resolved):Integral to find elbow volume

  • Thread starter Thread starter tracker890 Source h
  • Start date Start date
  • Tags Tags
    Volume
Click For Summary
SUMMARY

The discussion centers on calculating the volume of an elbow using integral calculus. The correct formula for the area of the circular cross-section is established as π(r/2)², leading to a volume of (3/16)π²r³ when integrated. The confusion arose from differing interpretations of the diameter and radius in the calculations. Ultimately, the resolution confirms that the volume of the elbow is accurately represented as 2.3562r³, consistent with the book's findings.

PREREQUISITES
  • Integral calculus, specifically for volume calculations
  • Understanding of circular cross-sections and their areas
  • Familiarity with LaTeX for mathematical expressions
  • Basic geometry, particularly regarding diameters and radii
NEXT STEPS
  • Study the application of integrals in calculating volumes of irregular shapes
  • Learn about the derivation of volume formulas for cylindrical and conical shapes
  • Explore advanced calculus techniques, including triple integrals
  • Practice using LaTeX for formatting mathematical equations
USEFUL FOR

Students and professionals in engineering, mathematics, and physics who are involved in fluid dynamics or structural analysis, particularly those needing to calculate volumes of complex shapes like elbows.

tracker890 Source h
Messages
90
Reaction score
11
Homework Statement
to find elbow volume
Relevant Equations
volume integral
has been resolved
1671522065456.png

Please help me to understand which answer is correct.
I use the integral method to find the elbow volume as follows:
1671522271843.png


But my book say:
1671522299478.png
 
Last edited:
Physics news on Phys.org
The area of the circular cross-section of diameter r shown in the integral is not correct, it should be ##\pi(r)^2/4##
 
Lnewqban said:
The area of the circular cross-section of diameter r shown in the integral is not correct, it should be ##\pi(r)^2/4##
i think it should be ##\pi(2r)^2/4##
 
tracker890 Source h said:
i think it should be ##\pi(2r)^2/4##
Think again…
The r that has been given to you is the diameter of the cross-section of the elbow.
Therefore, the area of that section should be π times the radius of that section, which in your case is r/2.
Then,
##\pi(r/2)^2=\pi(r)^2/4##
 
Last edited:
Another way to do it, leading to the same result of ##2.3562*r^3## that is shown in the book:
Straightening the elbow until it becomes a cylinder, its length should be equal to the perimeter of the center line of the elbow.
As the perimeter of that line is ##2\pi(radius~to~center)/4##, then
##Length=2\pi(1.5r)/4##
##Volume=Area~*~Length##
##Volume=(\pi/4)[(r^2)(2)(1.5)(r)]=(3/4)\pi(r^3)##
 
Last edited:
Lnewqban said:
Another way to do it, leading to the same result of ##2.3562*r^3## that is shown in the book:
Straightening the elbow until it becomes a cylinder, its length should be equal to the perimeter of the center line of the elbow.
As the perimeter of that line is ##2\pi(radius~to~center)/4##, then
##Length=2\pi(1.5r)/4##
##Volume=Area~*~Length##
##Volume=(\pi/4)[(r^2)(2)(1.5)(r)]=(3/4)\pi(r^3)##
Shouldn’t there be another π/4?
 
Frabjous said:
Shouldn’t there be another π/4?
Perhaps.
I am very clumsy working with LaTeX.

9A0C60D6-3A6A-4D0B-BAC6-52EE0504AD48.jpeg
 
Lnewqban said:
Perhaps.
I am very clumsy working with LaTeX.

View attachment 319111
Your answer is correct.
The cross section area = ##\pi \text{(}\frac{r}{2}\text{)}^2##
$$
\forall _{elbow}=\int_0^{\frac{\pi}{2}}{A\left( 1.5r \right) d\theta =}\int_0^{\frac{\pi}{2}}{\left( \pi \text{(}\frac{r}{2}\text{)}^2 \right) \left( \frac{3}{2}r \right) d\theta =\text{(}\frac{\pi r^2}{4}\text{)}\left( \frac{3}{2}r \right) \left( \frac{\pi}{2} \right)}=\frac{3}{16}\pi ^2r^3
$$
 
Last edited:
Lnewqban said:
Think again…
The r that has been given to you is the diameter of the cross-section of the elbow.
Therefore, the area of that section should be π times the radius of that section, which in your case is r/2.
Then,
##\pi(r/2)^2=\pi(r)^2/4##
Yes!
Your answer is correct.
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
28
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K
Replies
27
Views
4K
  • · Replies 13 ·
Replies
13
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K